	ENGINEERING MATHEMATICS – III								
[VECTOR CALCULUS, PARTIAL DIFFERENTIAL EQUATIONS and FOURIER ANALYSIS]									
Code	Category	Periods		Sessional	End Exam	Total	Credits		
		L	Т	Р	Marks	Marks	Marks		
MEC 211	BS	2	1	0	40	60	100	3	

Prerequisite: ENGINEERING MATHEMATICS – I, II

Course Objectives: The knowledge of Mathematics is necessary for a better understanding of almost all the Engineering and Science subjects. Here our intention is to make the students acquainted with the concept of basic topics from Mathematics, which they need to pursue their Engineering degree in different disciplines.

Course	Outcomes: At the end of the course the student will be able to:
CO-1	Explain the characteristics of scalar and vector valued functions and provide a
	physical interpretation of the gradient, divergence, curl and related concepts.
CO-2	Transform line integral to surface integral, surface to volume integral and vice -
	versa using Green's theorem, Stoke's theorem and Gauss's divergence theorem.
CO-3	Explain analytical methods for solving PDE's like applying separation of variables
	to solve elementary problems in linear second order partial differential equations
	(heat and wave equations).
CO-4	Understand the need for a function or its approximation as an infinite Fourier
	series to represent discontinuous function which occurs in signal processing
	and electrical circuits.
CO-5	Find different Fourier transforms of non-periodic functions and also use them
	to evaluate boundary value problems.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1												
CO-2												
CO-3												
CO-4												
CO-5												

Course Outcomes	PSO1	PSO2
CO-1		
CO-2		
CO-3		
CO-4		
CO-5		

CO- Course Outcome; PO- Program Outcome; PSO-Program Specific Outcome; Level- 1: Low, 2: Medium, 3: High

Department of Mechanical Engineering, ANITS.

SVL	ABUS
UNIT - I	Periods: 6L+2T=8
VECTOR DIFFERENTIATION	
Scalar and vector point functions - Del ap	pplied to scalar point functions - Directional
derivative - Del applied to vector point fun	ctions - Physical interpretation of divergence
and curl – Del applied twice to point functions	- Del applied to products of point functions.
Sections: 8.4, 8.5, 8.6, 8.7, 8.8 and 8.9.	
UNIT - II	Periods: 6L+2T=8
VECTOR INTEGRATION	
	ulation, work done – Surface integral, flux – orem – Volume integral – Gauss divergence ational and solenoidal fields.
Sections: 8.10, 8.11, 8.12, 8.13, 8.14, 8.15, 8.1	6 and 8.18.
UNIT - III	Periods: 6L+2T=8
PARTIAL DIFFERENTIAL EQUATIONS	
	bles – Vibrations of a stretched string: Wave tion $(\partial u/\partial t = c^{2}) (\partial^{2} u)/(\partial x^{2})$, and two quation : $(\partial^{2} u)/(\partial x^{2})+(\partial^{2} u)/(\partial y^{2})=0$).
	Periods: 6L+2T=8
UNIT - IV FOURIER SERIES	rerious: 0L+21-8
	s for a Fourier expansion – Functions having
	- Even and odd functions – Half range series –
Sections: 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10	.7 and 10.9.
UNIT - V	Periods: 6L+2T=8
FOURIER TRANSFORMS	
integrals – Fourier transforms – Properties o Parseval's identity for Fourier transforms – Re	eorem(without proof) - Fourier sine and cosine f Fourier transforms – Convolution theorem – elation between Fourier and Laplace transforms nction – Applications of transforms to boundary
Sections: 22.1, 22.2, 22.3, 22.4, 22.5, 22.6, 22	.7, 22.8, 22.9 and 22.11.

TEXT BOOKS:

1.	B. S. Grewal, Higher Engineering Mathematics, 43rd edition, Khanna publishers, 2017.
REF	FERENCE BOOKS:
1.	N P. Bali and Manish Goyal, A text book of Engineering mathematics, Laxmi
	publications,
2.	Erwin Kreyszig, Advanced Engineering Mathematics, 10th edition, John Wiley &
	Sons, 2011.
3.	R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3rdedition,
	Alpha
4.	George B. Thomas, Maurice D. Weir and Joel Hass, Thomas, Calculus, 13thedition,
	Pearson Publishers.

MATERIAL SCIENCE AND METALLURGY								
Code	Category		Period	ls	Sessional	End Exam	Total	Credits
		L	Т	Р	Marks	Marks	Marks	
MEC 212	PC	3	0	0	40	60	100	3

Prerequisite: Engineering Chemistry, Engineering Physics

Course Objectives: To give an insight to the student on the fundamentals of materials, their structure, properties, applications and failure mechanisms. Besides, introduce the different heat treatment methods, classify and study ferrous and non-ferrous alloys, composites and basics of Powder Metallurgy

Course Outcomes: At the end of the course the student will be able to:				
CO-1	Analyse the fundamental structures of materials and their properties.			
CO-2	Identify various phases of alloys accompanied with various heat treatment			
	methods.			
CO-3	Classify & explain various properties and applications of ferrous and non-ferrous			
	alloys and identify the properties of various materials based on their composition.			
CO-4	Analyse the failure of the given component using failure mechanisms.			
CO-5	Identify & synthesize the composite material and explain the principles of powder			
	Metallurgy components.			

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	1	2										
CO-2	1	2										
CO-3	1	2				1	1					
CO-4	1	2				1	1					
CO-5	1	2				1	1		1	2		1

Course Outcomes	PSO1	PSO2
CO-1	2	
CO-2	2	
CO-3	2	
CO-4	2	
CO-5	2	

SYLI	LABUS
UNIT - I	Periods: 8L+0T=8
Engineering Materials & Crystalline Solids	
	ation of Materials, Necessity of alloying, types
of solid solutions, Hume Rotherys rules.	
Crystalline Solids: Unit cells, Crystal syste	ems, Bravais Lattices, Atomic packing factor,
Miller Indices for Crystallographic planes a	nd directions. Crystal Defects: point, line and
surface defects, Determination of grain size,	effect of grain boundaries on the properties of
metal/ alloys.	
UNIT - II	Periods: 10L+0T=10
Binary Phase Diagrams & Heat treatment	of steel:
Binary Phase Diagrams: Gibbs Phase ru	le, Lever rule, Invariant reactions, Study of
important binary phase diagrams of Cu-Ni-, A	l-Cu, Bi-Cd and Fe-Fe ₃ C.
Heat treatment of steel: Isothermal tran	nsformation curves, Annealing, Normalizing,
Hardening, Tempering, Austempering and	Martempering of steels, Surface hardening of
steels: Carburizing, Nitriding, Cyaniding, Flan	ne and induction hardening methods.
UNIT - III	Periods: 10L+0T=10
Steels and Cast Irons & Non-ferrous metals	
Aluminium and its alloys, Titanium and its all	oys.
UNIT - IV	Periods: 10L+0T=10
UNIT - IV Plastic Deformation & Material Failure Me	Periods: 10L+0T=10
Plastic Deformation & Material Failure Me	echanisms
Plastic Deformation & Material Failure Me Plastic Deformation: Slip, Twinning, critic	echanisms
Plastic Deformation & Material Failure Me Plastic Deformation: Slip, Twinning, critic other strengthening mechanisms	echanisms al resolved shear stress. Strain hardening and
Plastic Deformation & Material Failure Me Plastic Deformation: Slip, Twinning, critic other strengthening mechanisms Material Failure Mechanisms: Ductile and	echanisms al resolved shear stress. Strain hardening and d Brittle fracture, Ductile to Brittle transition,
Plastic Deformation & Material Failure Me Plastic Deformation: Slip, Twinning, critic other strengthening mechanisms	echanisms al resolved shear stress. Strain hardening and d Brittle fracture, Ductile to Brittle transition,
 Plastic Deformation & Material Failure Meterial Plastic Deformation: Slip, Twinning, critice other strengthening mechanisms Material Failure Mechanisms: Ductile and fundamental concepts of creep and fatigue faile 	echanisms al resolved shear stress. Strain hardening and d Brittle fracture, Ductile to Brittle transition, lure, creep curve
Plastic Deformation & Material Failure MePlastic Deformation: Slip, Twinning, criticother strengthening mechanismsMaterial Failure Mechanisms: Ductile andfundamental concepts of creep and fatigue failUNIT - V	al resolved shear stress. Strain hardening and d Brittle fracture, Ductile to Brittle transition, lure, creep curve Periods: 10L+0T=10
Plastic Deformation & Material Failure MePlastic Deformation: Slip, Twinning, criticother strengthening mechanismsMaterial Failure Mechanisms: Ductile andfundamental concepts of creep and fatigue failUNIT - VComposite Materials & Powder Metallurgy	echanisms al resolved shear stress. Strain hardening and d Brittle fracture, Ductile to Brittle transition, lure, creep curve Periods: 10L+0T=10
Plastic Deformation & Material Failure Meterial Failure Meterials Plastic Deformation: Slip, Twinning, critic other strengthening mechanisms Material Failure Mechanisms: Ductile and fundamental concepts of creep and fatigue fail UNIT - V Composite Materials & Powder Metallurgy Composite Materials: Classification, Materials	al resolved shear stress. Strain hardening and d Brittle fracture, Ductile to Brittle transition, lure, creep curve Periods: 10L+0T=10 durices and reinforcements, polymer matrix
Plastic Deformation & Material Failure MetPlastic Deformation: Slip, Twinning, criticother strengthening mechanismsMaterial Failure Mechanisms: Ductile andfundamental concepts of creep and fatigue failUNIT - VComposite Materials & Powder MetallurgyComposite Materials: Classification, Materials: composite, ceramic matrix composite and metal	al resolved shear stress. Strain hardening and d Brittle fracture, Ductile to Brittle transition, lure, creep curve Periods: 10L+0T=10 durices and reinforcements, polymer matrix
Plastic Deformation & Material Failure Meterial Failure Meterials Plastic Deformation: Slip, Twinning, critic other strengthening mechanisms Material Failure Mechanisms: Ductile and fundamental concepts of creep and fatigue fail UNIT - V Composite Materials & Powder Metallurgy Composite Materials: Classification, Materials	al resolved shear stress. Strain hardening and d Brittle fracture, Ductile to Brittle transition, lure, creep curve Periods: 10L+0T=10 durices and reinforcements, polymer matrix
Plastic Deformation & Material Failure Meterial Failure Meterials Plastic Deformation: Slip, Twinning, critic other strengthening mechanisms Material Failure Mechanisms: Ductile and fundamental concepts of creep and fatigue fail UNIT - V Composite Materials & Powder Metallurgy Composite Materials: Classification, Ma composite, ceramic matrix composite and metal composites.	echanisms al resolved shear stress. Strain hardening and d Brittle fracture, Ductile to Brittle transition, lure, creep curve Periods: 10L+0T=10 v trices and reinforcements, polymer matrix etal matrix composites, Fabrication methods of
Plastic Deformation & Material Failure MetPlastic Deformation: Slip, Twinning, criticother strengthening mechanismsMaterial Failure Mechanisms: Ductile andfundamental concepts of creep and fatigue failUNIT - VComposite Materials & Powder MetallurgyComposite Materials: Classification, Macomposite, ceramic matrix composite and mecomposites.Powder Metallurgy: Principles of Powder	echanisms al resolved shear stress. Strain hardening and d Brittle fracture, Ductile to Brittle transition, lure, creep curve Periods: 10L+0T=10 v trices and reinforcements, polymer matrix etal matrix composites, Fabrication methods of
Plastic Deformation & Material Failure MetPlastic Deformation: Slip, Twinning, criticother strengthening mechanismsMaterial Failure Mechanisms: Ductile andfundamental concepts of creep and fatigue failUNIT - VComposite Materials & Powder MetallurgyComposite Materials: Classification, Macomposite, ceramic matrix composite and mecomposites.Powder Metallurgy: Principles of Powder	echanisms al resolved shear stress. Strain hardening and d Brittle fracture, Ductile to Brittle transition, lure, creep curve Periods: 10L+0T=10 v trices and reinforcements, polymer matrix etal matrix composites, Fabrication methods of • Metallurgy Process, Basic steps in Powder
Plastic Deformation & Material Failure MetPlastic Deformation: Slip, Twinning, criticother strengthening mechanismsMaterial Failure Mechanisms: Ductile and fundamental concepts of creep and fatigue failUNIT - VComposite Materials & Powder Metallurgy Composite, ceramic matrix composite and me composites.Powder Metallurgy: Principles of Powder Metallurgy, Powder Manufacture, Powder Metallurgy, Powder Manufacture, Powder Metallurgy	echanisms al resolved shear stress. Strain hardening and d Brittle fracture, Ductile to Brittle transition, lure, creep curve Periods: 10L+0T=10 v trices and reinforcements, polymer matrix etal matrix composites, Fabrication methods of • Metallurgy Process, Basic steps in Powder

II YEAR – I SEMESTER

TE	XT BOOKS:
1.	Introduction to Physical Metallurgy, S.H. Avner, Tata McGraw Hill edition
2.	Material Science and Metallurgy for Engineers, V.D. Kodgire & S.V. Kodgire, Everest Publishing House.
3.	Materials Science and Engineering: An Introduction, William D. Callister Jr., David G. Rethwisch, wiley
4.	Material Science and Engineering, L.H.Van Vleck, 5th edition, Addison Wealey (1985).
RE	FERENCE BOOKS:
1.	Structure and Properties of Materials, R.M. Rose, L.A.Shepard and J.Wulff Vol.1, John Willey (1966).
2.	Essentials of Material Science, A.G. Guy ,McGraw-Hill (1976).
3.	Material Science and Engineering, V. Raghavan ,Printice Hall of India
4.	Essential of Materials science and engineering - Donald R.Askeland - Cengage
WE	B RESOURCES:
1.	http://www.edinformatics.com/
2.	http://materials.npl.co.uk/
3.	http://www.wwcomposites.com/

ENGINEERING MECHANICS								
Code	Category		Period	ls	Sessional	End Exam	Total	Credits
		L	Т	Р	Marks	Marks	Marks	
MEC 213	PC	2	1	0	40	60	100	3

Prerequisite: Mathematics, Physics.

Course Objectives: To enable the students understand and distinguish different force systems, evaluate the conditions required for their equilibrium, apply the concepts of dry friction, determine the properties of surfaces and solids, distinguish between particle and rigid body mechanics and further apply the principles of dynamics to motion.

Course	Outcomes: At the end of the course the student will be able to:
CO-1	Determine the resultant force for the given coplanar and non-coplanar force systems.
CO-2	Calculate the forces required to keep the body in equilibrium by considering friction and further determine the centroid of plane surfaces and composite areas.
СО-3	Calculate the Moment of Inertia of composite sections, mass moment of inertia of regular solids and further estimate the forces in a planar truss using the method of joints/sections.
CO-4	Determine the kinematic and kinetic parameters of a particle under rectilinear (or) curvilinear translation; and solve problems on elastic collision.
CO-5	Evaluate the kinematic and kinetic parameters of a rigid body in rotation (or) general plane motion.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	2										
CO-2	2	2										
CO-3	2	2										
CO-4	2	2										
CO-5	2	2										

Course Outcomes	PSO1	PSO2
CO-1	2	
CO-2	2	
CO-3	2	
CO-4	2	
CO-5	2	

SYL	LABUS
UNIT - I	Periods: 6L+3T=9
STATICS	
Statics of Particles: Fundamental concepts a	and principles- Resultant of coplanar concurrent
forces and non-concurrent forces, Principles	of superposition and transmissibility. free body
diagrams, Equilibrium of particles. Resultant	t of concurrent forces in space (vector method).
	uple-Varignon's theorem – Free body diagram
_	ports and their reactions – Equilibrium of Rigid
bodies	
UNIT - II	Periods: 6L+3T=9
FRICTION AND CENTROID	
	tion, Cone of friction, Problems on connected
bodies, wedges and ladders.	, ,
_	of lines & areas, C.G of volumes –determination
by first principles, Composite areas.	of fines & areas, 0.0 of volumes determination
UNIT - III	Periods: 6L+3T=9
MOMENT OF INERTIA AND TRUSSES	
	of an area- Radius of gyration - Parallel and
perpendicular axis theorems – Polar moment	
_	sses - Analysis of planar Trusses - Method of
joints- Method of sections.	
UNIT - IV DYNAMICS OF PARTICLES	Periods: 6L+3T=9
	Curvilinear motion. Uniform and Non Uniform
	urvinnear motion. Onnorm and Non Onnorm
Motion	
	'Alembert's Principle-Work-Energy Equation,
	Im –Impact of elastic bodies- Impact - direct and
central impact – coefficient of restitution.	
UNIT - V	Periods: 6L+3T=9
DYNAMICS OF RIGID BODIES	renous: oL+31-9
	neral plane motion –Velocity and Acceleration-
	igid bodies in plane motion- Newton's Laws-
	iple-Principle of impulse momentum for rigid
bodies in plane motion Simple Harmonic M	lotion
TEXT BOOKS:	
1. Engineering Mechanics by S. Timoshen	ko and D.H.Young, McGraw-Hill
2. Engineering Mechanics by S.S.Bhavika	tti, New age international publishers
3. Engineering Mechanics – Statics and D	ynamics by A.K.Tayal
	ynamics by A.K.Tayal s and Dynamics by Ferdinand P.Beer & E. R.

II YEAR – I SEMESTER

REFERENCE BOOKS:

1.	Engineering Mechanics – STATICS by J. L. Meriam and L. G. Kraige, Wiley India				
2.	Engineering Mechanics – DYNAMICS by J. L. Meriam and L. G. Kraige, Wiley India				
3.	Engineering Mechanics – Statics and Dynamics by Irving Shames, Prentice Hall of				
4.	Engineering Mechanics by K.L.Kumar, McGraw-Hill.				
WE	WEB RESOURCES:				
1.	https://nptel.ac.in/courses/112/106/112106286/				

2. https://imechanica.org/

MECHANICS OF SOLIDS								
Code	Category		Period	ls	Sessional	End Exam	Total	Credits
		L	Т	P	Marks	Marks	Marks	
MEC 214	PC	2	1	0	40	60	100	3

Prerequisite: Mathematics-I & II

Course Objectives: The objective is to provide the fundamental principles involved in Mechanics of Solids to enable them to apply in the study of advanced subjects. Further the objective is also to make the students understand the effect of forces on deformable bodies under various loading conditions, and thus calculate various types of stresses such as direct stresses, bending stresses, torsional stresses and evaluate deflection of beams.

Course	Outcomes: At the end of the course the student will be able to:
CO-1	Determine the principal stresses and strains on an oblique plane for a given structure/mechanical components under complex loading conditions.
CO-2	Evaluate the effect of shear force and bending moment on various beams for all types of loading to determine bending stress and shear stresses.
CO-3	Evaluate the slope and deflection induced in the beams by using Double integration, Macualay's and Moment Area method.
CO-4	Determine the torsional stresses in shafts and further estimate the crippling loads in short and long columns.
CO-5	Evaluate the hoop and longitudinal stresses in thin and thick cylinders due to internal and external pressures.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	2							2	2		1
CO-2	2	2							2	2		1
CO-3	2	2							2	2		1
CO-4	2	2							2	2		1
CO-5	2	2	1						2	2		1

Course Outcomes	PSO1	PSO2
CO-1	2	0
CO-2	2	0
CO-3	2	0
CO-4	2	0
CO-5	2	0

<u>S</u>	YLLABUS
UNIT - I	Periods: 8L+4T=12
UNIT TITLE: STRESSES AND STRAIN Stress – Strain Stress Strain diagram for	S ductile and brittle materials, Poisson's ratio, Elastic
	d Hook's law, Factor of safety, Strain energy, Impact
-	
	bars and tapered bar of uniform circular cross section.
-	lane under uni-axial, bi-axial, pure shear & combined
loading, principal stresses & strains, Mohr's c	circle for plane stresses.
UNIT-II	Periods: 6L+3T=9
UNIT TITLE: ANALYSIS OF BEAMS	renous: 0L+51-9
	ending Moment diagrams for cantilever, simply
supported and over hanging beams, Theory of	f pure bending, flexural formula, shear stress distribution
in beams (rectangle, circular, I & T sections).	
UNIT - III	Periods: 6L+3T=9
UNIT TITLE: DEFLECTION OF BEAM	
	ion, deflection of simply supported, cantilever and
-	thod, Macaulay's method, moment area method-
application to simple cases.	
application to simple cases.	
UNIT - IV	Periods: 6L+3T=9
UNIT - IV UNIT TITLE: TORSION AND COLUMN	
UNIT TITLE: TORSION AND COLUMN	
UNIT TITLE: TORSION AND COLUMN	NS a, torsion of circular and hollow shafts. Theory of
UNIT TITLE: TORSION AND COLUMN Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory.
UNIT TITLE: TORSION AND COLUMN Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9
UNIT TITLE: TORSION AND COLUMN Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V UNIT TITLE: THIN & THICK CYLIND	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9 DERS
UNIT TITLE: TORSION AND COLUMN Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V UNIT TITLE: THIN & THICK CYLIND Stress & Strains in thin cylinders & spherical	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9 DERS shells. Introduction to thick cylinder –Lame's equation,
UNIT TITLE: TORSION AND COLUMN Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V UNIT TITLE: THIN & THICK CYLIND	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9 DERS shells. Introduction to thick cylinder –Lame's equation,
UNIT TITLE: TORSION AND COLUMN Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V UNIT TITLE: THIN & THICK CYLIND Stress & Strains in thin cylinders & spherical cylinder subjected to internal and external pre	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9 DERS shells. Introduction to thick cylinder –Lame's equation,
UNIT TITLE: TORSION AND COLUMN Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V UNIT TITLE: THIN & THICK CYLIND Stress & Strains in thin cylinders & spherical cylinder subjected to internal and external pre TEXT BOOKS:	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9 DERS shells. Introduction to thick cylinder –Lame's equation, essures.
UNIT TITLE: TORSION AND COLUMN Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V UNIT TITLE: THIN & THICK CYLIND Stress & Strains in thin cylinders & spherical cylinder subjected to internal and external pre TEXT BOOKS:	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9 DERS shells. Introduction to thick cylinder –Lame's equation,
UNIT TITLE: TORSION AND COLUMN Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V UNIT TITLE: THIN & THICK CYLIND Stress & Strains in thin cylinders & spherical cylinder subjected to internal and external pre TEXT BOOKS: 1. "A Text Book of Strength of Materia	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9 DERS shells. Introduction to thick cylinder –Lame's equation, essures. als", R.K. Bansal, Lakshmi Publications Pvt. Ltd.,
UNIT TITLE: TORSION AND COLUME Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V UNIT TITLE: THIN & THICK CYLIND Stress & Strains in thin cylinders & spherical cylinder subjected to internal and external pre TEXT BOOKS: 1. "A Text Book of Strength of Materia New Delhi 2. Strength of materials, R.K. Rajput, S	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9 DERS shells. Introduction to thick cylinder –Lame's equation, essures. als", R.K. Bansal, Lakshmi Publications Pvt. Ltd.,
UNIT TITLE: TORSION AND COLUME Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V UNIT TITLE: THIN & THICK CYLIND Stress & Strains in thin cylinders & spherical cylinder subjected to internal and external pre TEXT BOOKS: 1. "A Text Book of Strength of Materia New Delhi 2. Strength of materials, R.K. Rajput, S REFERENCE BOOKS:	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9 DERS shells. Introduction to thick cylinder –Lame's equation, essures. als", R.K. Bansal, Lakshmi Publications Pvt. Ltd., S. Chand Ltd. Publications.
UNIT TITLE: TORSION AND COLUME Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V UNIT TITLE: THIN & THICK CYLIND Stress & Strains in thin cylinders & spherical cylinder subjected to internal and external pre TEXT BOOKS: 1. "A Text Book of Strength of Materia New Delhi 2. Strength of materials, R.K. Rajput, S REFERENCE BOOKS: 1. Mechanics of Materials, Gere & Tim	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9 DERS shells. Introduction to thick cylinder –Lame's equation, essures. als", R.K. Bansal, Lakshmi Publications Pvt. Ltd., S. Chand Ltd. Publications. noshenko, CBS Publishers.
UNIT TITLE: TORSION AND COLUME Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V UNIT TITLE: THIN & THICK CYLIND Stress & Strains in thin cylinders & spherical cylinder subjected to internal and external pre TEXT BOOKS: 1. "A Text Book of Strength of Materia New Delhi 2. Strength of materials, R.K. Rajput, S REFERENCE BOOKS: 1. Mechanics of Materials, Gere & Tim 2. Strength of Materials, S.S. Ramamru	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9 DERS shells. Introduction to thick cylinder –Lame's equation, essures. als", R.K. Bansal, Lakshmi Publications Pvt. Ltd., S. Chand Ltd. Publications. noshenko, CBS Publishers. utham & R, Narayanan, Dhanpat Rai publications.
UNIT TITLE: TORSION AND COLUMN Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V UNIT TITLE: THIN & THICK CYLIND Stress & Strains in thin cylinders & spherical cylinder subjected to internal and external pre TEXT BOOKS: 1. "A Text Book of Strength of Materia New Delhi 2. Strength of materials, R.K. Rajput, S REFERENCE BOOKS: 1. Mechanics of Materials, Gere & Tim 2. Strength of Materials, S.S. Ramamru 3. Strength of Materials, Dr. Sadhu Sin 4. "Engineering Mechanics of solids" H	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9 DERS shells. Introduction to thick cylinder –Lame's equation, essures. als", R.K. Bansal, Lakshmi Publications Pvt. Ltd., S. Chand Ltd. Publications. noshenko, CBS Publishers. utham & R, Narayanan, Dhanpat Rai publications.
UNIT TITLE: TORSION AND COLUMN Introduction to pure torsion, torsional formula columns – long and short columns, Euler's the UNIT - V UNIT TITLE: THIN & THICK CYLIND Stress & Strains in thin cylinders & spherical cylinder subjected to internal and external pre TEXT BOOKS: 1. "A Text Book of Strength of Materia New Delhi 2. Strength of materials, R.K. Rajput, S REFERENCE BOOKS: 1. Mechanics of Materials, Gere & Tim 2. Strength of Materials, S.S. Ramamru 3. Strength of Materials, Dr. Sadhu Sin	NS a, torsion of circular and hollow shafts. Theory of eory, crippling load, Rankine's theory. Periods: 6L+3T=9 DERS shells. Introduction to thick cylinder –Lame's equation, essures. als", R.K. Bansal, Lakshmi Publications Pvt. Ltd., S. Chand Ltd. Publications. S. Chand Ltd. Publications. noshenko, CBS Publishers. utham & R, Narayanan, Dhanpat Rai publications. hgh, Khanna Publications Egor P. Popov, Second edition, Prentice hall of

WE	B RESOURCES:
1.	http://nptel.ac.in/courses/Webcourse-contents/IIT-
	ROORKEE/strength%20of%20materials/homepage.htm
2.	http://www.aboutcivil.org/solid-mechanics.html
3.	http://web.mit.edu/emech/dontindex-build/
4.	http://web.aeromech.usyd.edu.au/AMME2301/Documents/
5.	http://www.faadooengineers.com/threads/9673-Mechanics-of-Solids-Lecture-
	Notes-Pdfs-Full-Notes-All-Units-Download
6.	http://www.ijee.ie/OnlinePapers

BASIC THERMODYNAMICS								
Code	Category		Period	ls	Sessional	End Exam	Total	Credits
		L	Т	P	Marks	Marks	Marks	
MEC 215	PC	2	1	0	40	60	100	3

Prerequisite: Engineering Physics - I

Course Objectives: To provide the student with a simplistic and practical approach to the fundamental subject of thermodynamics and create an interest and intuitive understanding of the nuances of this core subject which deals with energy and its different forms and to solve any real time engineering problems.

Course Outcomes: At the end of the course the student will be able to:CO-1Classify thermodynamic systems & analyze the interaction between system & surroundings.CO-2Apply the first law of thermodynamics to both flow & non flow processes
and evaluate the energy interactions between system & surroundingsCO-3Apply the second law of thermodynamics and evaluate efficiency of Heat engine and
COP of Refrigerator & Heat pumpCO-4Assess the entropy generation & Exergy destruction in a thermodynamic process.CO-5Evaluate the properties of gas and gas mixture.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	2										
CO-2	2	2										
CO-3	2	2										
CO-4	2	2					1					
CO-5	2	2										

Course Outcomes	PSO1	PSO2
CO-1	-	-
CO-2	-	_
CO-3	-	_
CO-4	-	-
CO-5	-	_

CO- Course Outcome; PO- Program Outcome; PSO-Program Specific Outcome; Level- 1: Low, 2: Medium, 3: High

Department of Mechanical Engineering, ANITS.

	SYLLABUS	
UNIT - I		Periods: 6L+1T=7
Basic Concepts		
System, Control Volume, Surr Macroscopic and Microscopic Equilibrium, State, Property, Proc Transition, Work and Heat, Path a	viewpoints, Concept of cess, Cycle, Quasi – static	Continuum, Thermodynamic
UNIT - II Zeroth and First law		Periods: 6L+3T=9
	Concert of aquality of	Forme anothing Defense of Deints
Zeroth Law of Thermodynamics - – PMM I - Joule's Experiments – applied to a Non-flow processes Internal Energy and enthalpy– Ste processes. Limitations of the First	- First law of Thermodyna and flow process, Heat a eady Flow Energy Equati	amics – Corollaries – First law and Work Transfer, changes in
UNIT - III		Periods: 6L+3T=9
		Terious. 0L+31-9
Second law		of performance. Second Law of
Thermal Reservoir, Heat Engine, Thermodynamics, Kelvin-Planck an PMM-II, Carnot's principle, Revers cycle, Carnot theorem, Corollary of	nd Clausius Statements an sibility and Irreversibility,	nd their Equivalence, Corollaries Causes of Irreversibility, Carnot
Thermal Reservoir, Heat Engine, Thermodynamics, Kelvin-Planck an PMM-II, Carnot's principle, Revers cycle, Carnot theorem, Corollary of UNIT - IV	nd Clausius Statements an sibility and Irreversibility,	nd their Equivalence, Corollaries, Causes of Irreversibility, Carnot law efficiency.
Thermal Reservoir, Heat Engine, Thermodynamics, Kelvin-Planck an PMM-II, Carnot's principle, Revers cycle, Carnot theorem, Corollary of	nd Clausius Statements an sibility and Irreversibility, f Carnot theorem, second 1 perty, Clausius Inequality, Availability and Irreversil & flow processes, Gouy	A their Equivalence, Corollaries, Causes of Irreversibility, Carnot law efficiency. Periods: 6L+5T=11 Principle of Entropy Increase, bility –Quality of energy, Dead –stodola equation, Gibbs and
Thermal Reservoir, Heat Engine, Thermodynamics, Kelvin-Planck an PMM-II, Carnot's principle, Revers cycle, Carnot theorem, Corollary of UNIT - IV Entropy and Exergy Clausius theorem, Entropy-a prop Application of entropy principle. state, Availability in non-flow & Helmholtz Functions, Maxwell Re	nd Clausius Statements an sibility and Irreversibility, f Carnot theorem, second 1 perty, Clausius Inequality, Availability and Irreversil & flow processes, Gouy	ad their Equivalence, Corollaries, Causes of Irreversibility, Carnot law efficiency. Periods: $6L+5T=11$ Principle of Entropy Increase, bility –Quality of energy, Dead –stodola equation, Gibbs and on for C _p and C _v .
Thermal Reservoir, Heat Engine, Thermodynamics, Kelvin-Planck an PMM-II, Carnot's principle, Reverse cycle, Carnot theorem, Corollary of UNIT - IV Entropy and Exergy Clausius theorem, Entropy-a prop Application of entropy principle. state, Availability in non-flow & Helmholtz Functions, Maxwell Re	nd Clausius Statements an sibility and Irreversibility, f Carnot theorem, second 1 perty, Clausius Inequality, Availability and Irreversil & flow processes, Gouy	ad their Equivalence, Corollaries, Causes of Irreversibility, Carnot law efficiency. Periods: $6L+5T=11$ Principle of Entropy Increase, bility –Quality of energy, Dead –stodola equation, Gibbs and on for C _p and C _v .
Thermal Reservoir, Heat Engine, Thermodynamics, Kelvin-Planck an PMM-II, Carnot's principle, Revers cycle, Carnot theorem, Corollary of UNIT - IV Entropy and Exergy Clausius theorem, Entropy-a prop Application of entropy principle. state, Availability in non-flow & Helmholtz Functions, Maxwell Re	nd Clausius Statements an sibility and Irreversibility, f Carnot theorem, second I perty, Clausius Inequality, Availability and Irreversil & flow processes, Gouy elations, general expression Characteristic and Universion r Waals Equation of State. lecular weight and gas c	ad their Equivalence, Corollaries, Causes of Irreversibility, Carnot law efficiency. Periods: $6L+5T=11$ Principle of Entropy Increase, bility –Quality of energy, Dead –stodola equation, Gibbs and on for C _p and C _v . Periods: $6L+3T=9$ al Gas constants — Deviations Gas mixtures-Daltons law and constant, specific heats of gas
Thermal Reservoir, Heat Engine, Thermodynamics, Kelvin-Planck an PMM-II, Carnot's principle, Reverse cycle, Carnot theorem, Corollary of UNIT - IV Entropy and Exergy Clausius theorem, Entropy-a prop Application of entropy principle. state, Availability in non-flow & Helmholtz Functions, Maxwell Re UNIT - V Perfect Gas & Gas mixtures Unit contents Equation of State, C from perfect Gas Model – Vander Gibbs-Dalton law, apparent mol mixture, volumetric & gravimetri gases.	nd Clausius Statements an sibility and Irreversibility, f Carnot theorem, second I perty, Clausius Inequality, Availability and Irreversil & flow processes, Gouy elations, general expression Characteristic and Universion r Waals Equation of State. lecular weight and gas c	ad their Equivalence, Corollaries, Causes of Irreversibility, Carnot law efficiency. Periods: $6L+5T=11$ Principle of Entropy Increase, bility –Quality of energy, Dead –stodola equation, Gibbs and on for C _p and C _v . Periods: $6L+3T=9$ al Gas constants — Deviations Gas mixtures-Daltons law and constant, specific heats of gas
Thermal Reservoir, Heat Engine, Thermodynamics, Kelvin-Planck an PMM-II, Carnot's principle, Reverse cycle, Carnot theorem, Corollary of UNIT - IV Entropy and Exergy Clausius theorem, Entropy-a prop Application of entropy principle. state, Availability in non-flow & Helmholtz Functions, Maxwell Re UNIT - V Perfect Gas & Gas mixtures Unit contents Equation of State, C from perfect Gas Model – Vander Gibbs-Dalton law, apparent mol mixture, volumetric & gravimetric	nd Clausius Statements and sibility and Irreversibility, f Carnot theorem, second I perty, Clausius Inequality, Availability and Irreversil & flow processes, Gouy elations, general expression Characteristic and Universion Characteristic and Universion r Waals Equation of State. lecular weight and gas context ic analysis of gas mixture	ad their Equivalence, Corollaries, Causes of Irreversibility, Carnot law efficiency. Periods: $6L+5T=11$ Principle of Entropy Increase, bility –Quality of energy, Dead –stodola equation, Gibbs and on for C _p and C _v . Periods: $6L+3T=9$ al Gas constants — Deviations Gas mixtures-Daltons law and constant, specific heats of gas es, adiabatic mixing of perfect

REFERENCE BOOKS:

1.	Thermal Science & Engineering by Dr.D.S.Kumar, S.K.Kataria & sons publication				
2.	Thermal Engineering by R.K.Rajput, S.Chand & Co.				
WE	WEB RESOURCES:				
1.	http://nptel.ac.in/courses/112108148/				
2.	http://nptel.ac.in/courses/112105123/				

MANUFACTURING PROCESSES								
Code	Category	Periods		Session	End Exam	Total	Credits	
		L	Т	Р	Marks	Marks	Marks	
MEC216	PC	3	0	0	40	60	100	3

Prerequisite: None

Course Objectives: To familiarize the students with the basics of primarymanufacturing processes like casting, welding, bulk metal and sheet metal forming and to impart knowledge of additive manufacturing.

Course	Course Outcomes: At the end of the course the student will be able to:				
CO-1	Explain casting process, identify different types of patterns and evaluate gating system design				
CO-2	Differentiate various casting processes and identify the casting defects.				
CO-3	Distinguish welding processes and analyze different weld defects.				
CO-4	Illustrate various bulk metal forming processes and categorize various sheet metal operations				
CO-5	Interpret additive manufacturing and compare different Additive Manufacturing processes.				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	1						1	1	1		1
CO-2	1	1						1	1	1		1
CO-3	2	1						1	1	1		1
CO-4	1	1						1	1	1		1
CO-5	1	1						1	1	1		1

Course Outcomes	PSO1	PSO2
CO-1	2	
CO-2	1	
CO-3	2	
CO-4	1	
CO-5	1	

<u>SYLLABUS</u>			
UNIT – I	Periods: 9L		

Casting

Sand casting-procedure, Pattern-its types, materials, allowances, Basic problems on pattern allowances, Moulding sands-properties and types of moulds, Sand mould making machines, Sand properties testing procedures, Gating system, it's design and characteristics, Gating ratio-problems. Riser-types & design methods - problems on riser design, directional solidification in casting, Core materials and core making, Types of core sands.

UNIT – II	Periods: 9L

Melting furnaces and Special Casting processes

Melting furnaces: Blast, cupola, electric arc and electro-magnetic induction furnaces.

Special casting processes: Permanent mould casting processes– Die casting, Shell casting and Centrifugal casting processes, Investment casting, vacuum sealed casting, Continuous casting processes. Advantages, limitations and applications of each casting process, Fettling and finishing of castings, Casting defects, Inspection and Non Destructive Testing.

UNIT – III

Metal Joining processes

Periods: 12L

Welding – Introduction, Terminology, Types of weld joints, Weld positions, Oxyacetylene Gas welding and Gas cutting, Arc welding - principle and processes (MMAW, TIG, GMAW, SAW and PAW), Types of metal transfer in GMAW, Basic problems on duty cycle and number of passes, Resistance welding (spot, seam, projection, upset and flash welding techniques) and problems on heat generation. Solid state welding processes (Friction welding, Friction stir welding and Explosion welding), Weld defects –causes and remedies, Inspection and testing. Brazing, Soldering and Braze welding and their applications.

UNIT – IV	Periods: 9L		
Metal forming processes			

Bulk metal forming processes: Elastic and plastic deformation, Concept of strain hardening, Hot working and cold working. Rolling – Principle, Rolling pass sequence, Forging – Principle, Forging operations–Different types of Forging. Extrusion- its types, hydrostatic, impact, cold forging extrusion processes, Wire, Rod and Tube drawing, Rotary swaging.

Sheet metal forming : Shearing, Deep-drawing, Bending, Squeezing, Press working and its classification, Types of dies, Press tool operations – Cutting operations (blanking, punching, notching etc.) and Shaping operations (embossing, coining, spinning, stretch forming etc.), High Energy rate forming processes, Principles of explosive forming and electromagnetic

UNIT – V	Periods: 9L
Introduction to Additive manufacturin	
(AM), Additive Manufacturing Tech Applications in various fields, Introduct	ditional Manufacturing vs Additive Manufacturing nology (AMT) in product development-Need, tion to different AM techniques based on materials based) – AM Tooling – Applications, Pre and post
TEXT BOOKS:	
1.Manufacturing Engineering & TechEdition (2018), Pearson Education I	nology, Serope Kalpak Jian, <u>Steven R. Schmid</u> , 7 th Publications.
2. Manufacturing Technology - Volum Publications.	ne-I, P.N. Rao, 5 th Edition (2018), Tata McGraw-Hill
3. Production Technology- Volume-I,	R.K. Jain, 19 th Edition (2020),Khanna Publications.
4. Additive Manufacturing Technolog M., 3 rd Edition (2021), Springer pub	ies. Gibson, I., Rosen, D., Stucker, B., Khorasani, lication.
REFERENCE BOOKS :	
	cturing, De Garmo, Black and Kohsen, 13th Edition
2. Manufacturing Science ,AmithabaC East West Press Pvt. Ltd.	Ghosh and Asok Kumar Mallik, 2 nd Edition (2010),
3. Additive Manufacturing Techno Manufacturing, Ian Gibson, David publication.	logies. Rapid Prototyping to Direct Digital W.Rosen, Brent Struker, 1 st edition (2010),Springer
WEB RESOURCES:	
1. https://nptel.ac.in/courses/112/107/1	12107144/
2. https://nptel.ac.in/courses/110/106/1	

MECHANICS OF SOLIDS LAB										
Code	Category		Periods		Sessional	End Exam	Total	Credits		
		L	Т	Р	Marks	Marks	Marks			
MEC 217	PC	0	0 0 3		50	50	100	1.5		

Course Objectives: The objective of the lab is to enable the students to observe and determine the response of the material under different loads and measure the mechanical properties of materials such as tensile strength, compressive strength, impact strength, hardness, stiffness, modulus of rigidity, and modulus of elasticity.

Further, the student gains knowledge to use appropriate material for a required application in civil, automotive, aerospace, and other industries

Course	Course Outcomes: At the end of the course the student will be able to:							
CO-1	Measure and analyse the various properties of materials under							
	Tensile/Compressive/Shear and Bending loads using Universal testing machine.							
CO-2	Determine the Modulus of rigidity of a given material using Torsion and Spring testing equipment's.							
CO-3	Determine the energy absorbed by a ductile material using impact testing machine.							
CO-4	Determine the Hardness of ferrous and non-ferrous materials using Brinell, Rockwell and Vickers hardness testing machines.							
CO-5	Determine the Modulus of Elasticity of mild steel and wood using simply supported and cantilever set-up arrangements.							

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	1		1				1		2		1
CO-2	2	1		1				1		2		1
CO-3	2	1		1				1		2		1
CO-4	2	1		1				1		2		1
CO-5	2	1		1				1		2		1

Course Outcomes	PSO1	PSO2
CO-1	1	1
CO-2	1	1
CO-3	1	1
CO-4	1	1
CO-5	1	1

CO- Course Outcome; PO- Program Outcome; PSO-Program Specific Outcome; Level- 1: Low, 2: Medium, 3: High

S.NO	NAME OF THE EXPERIMENT	COURSE OUTCOME
1	Calculate Young's modulus, Ultimate strength, Breaking strength, Yield strength, Percentage elongation and Percentage reduction in area for mild steel specimen using universal testing machine	CO1
2.	Determine Compressive strength of wood by using universal testing machine	CO1
3.	Calculate modulus of rigidity of given mild steel specimen using torsion testing machine	CO2
4.	Calculate modulus of rigidity of given helical coil spring wire using Spring testing machine	CO2
5	Determine Impact strength of the given mild steel specimen using Impact testing machine.	CO3
6	Determination of Brinell hardness number by using Brinell hardness testing machine.	CO4
7	Determination of Rockwell hardness number by using Rockwell hardness testing machine.	CO4
8.	Determination of Vickers hardness number by using vickers hardness testing machine.	CO4
9	Determine modulus of elasticity of given mild steel bar, simply supported at the ends.	CO5
10.	Determine modulus of elasticity of given wooden bar, simply supported at the ends.	CO5
11	Determine modulus of elasticity of given mild steel bar, supported like a cantilever.	CO5
12	Determine modulus of elasticity of given wooden bar, supported like a cantilever.	CO5
13	Determine shear strength of the given mild steel specimen by performing shear test using Universal Testing Machine.	CO1
14	Determine bending stress induced in the given mild steel specimen by performing bending test using Universal Testing Machine	CO1

LIST OF EXPERIMENTS (Any 10)

MANUFACTURING LAB									
Code	Category	Periods		Sessional	End Exam	Total	Credits		
	0.	L	Т	Р	Marks	Marks	Marks		
MEC 218	PC	0	0	3	50	50	100	1.5	

Course Objective: To demonstrate manual arc welding and spot welding through the practice of fabricating various weld joints. The course also gives an opportunity to the student in preparing moulds for different patterns and further for determining the characteristics of moulding sand.

Course Outcomes: At the end of the course the student will be able to:							
CO-1	Prepare sand mould & castings for different patterns.						
CO-2	Evaluate the properties of moulding sand to check its suitability.						
CO-3	Produce a spectrum of weld joints by using manual arc welding and spot welding						
	processes.						

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	1		2					2		3		
CO-2	1			3				2		3		
CO-3	1		2					2		3		

Course Outcomes	PSO1	PSO2
CO-1	1	
CO-2	1	2
CO-3	1	

CO- Course Outcome; PO- Program Outcome; PSO-Program Specific Outcome; Level- 1: Low, 2: Medium, 3: High

List of Experiments

S.No.	Name of the Experiment	СО						
1	Preparation of sand mould for solid flange	CO-1						
2	Preparation of sand mould for stepped cone pulley	CO-1						
3	Preparation of sand mould for hollow pipe	CO-1						
4	Moisture content test	CO-2						
5	Clay content test	CO-2						
6	Green compression and Shear Strength test	CO-2						
7	Sieve analysis	CO-2						
8	V-Butt joint using manual metal arc welding	CO-3						
9	Corner weld joint using manual metal arc welding	CO-3						
10	Double lap weld joint using manual metal arc welding	CO-3						
11	Lap joint using Spot welding equipment	CO-3						
REFEI	RENCE BOOKS:	·						
1.	1. Manufacturing Technology, P.N.Rao, Mc Graw-Hill Book Company							

	ENGINEERING MATHEMATICS – IV [complex variables, probability & sampling]									
Code	Category	Periods			Sessional	End Exam	Total	Credits		
		L	Т	Р	Marks	Marks	Marks			
MEC 221	BS	2	1	0	40	60	100	3		

Prerequisite: Complex Numbers, Differentiation, Integration, Binomial expansions and

Course Objectives: The knowledge of Mathematics is necessary for a better understanding of almost all the Engineering and Science subjects. Here our intention is to make the students acquainted with the concept of basic topics from Mathematics, which they need to pursue their Engineering degree in different disciplines.

Course	Course Outcomes: At the end of the course the student will be able to:						
CO-1	Analyze limit, continuity and differentiation of functions of complex variables and						
	understand Cauchy-Riemann equations, analytic functions and various properties of						
	analytic functions.						
CO-2	Understand Cauchy's theorem and Cauchy's integral formulas and apply these to						
	evaluate complex contour integrals and represent functions as Taylor and Laurent						
	series and determine their intervals of convergence.						
CO-3	Be familiar with numerical solution of ordinary differential equations.						
CO-4	Examine, analyze and compare Probability distributions.						
CO-5	Analyze the Statistical data by using statistical tests and to draw valid inferences						
	about the population parameters.						

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1												
CO-2												
CO-3												
CO-4												
CO-5												

Course Outcomes	PSO1	PSO2
CO-1		
CO-2		
CO-3		
CO-4		
CO-5		

SYLL	LABUS
UNIT - I	Periods: 6L+2T=8
FUNCTIONS OF A COMPLEX VARIABL	
	arts of complex function – Limit – Continuity
and derivative of a complex function – Cauch	hy-Riemann equations – Analytic function – E
ntire function – Singular point – Conjugate f	function – Cauchy-Riemann equations in polar
form – Harmonic functions – Milne-Thom	nson method – Simple applications to flow
problems – Applications to flow problems	- Some standard transformations(Translation,
Inversion and Reflection, Bilinear transforma	ations and its fixed points).
Sections: 20.1, 20.2, 20.3, 20.4, 20.5, 20.6 and	-
UNIT - II	Periods: 6L+2T=8
COMPLEX INTEGRATION & SERIES O	
Complex integration – Cauchy's theorem – C	Cauchy's integral formula – Series of complex
	s expansion, and Laurent's series (without
proofs).	- · · ·
Sections: 20.12, 20.13, 20.14 and 20.16.	
UNIT - III	Periods: 6L+2T=8
NUMERICAL SOLUTIONS OF ORDINAL	RY DIFFERENTIAL EQUATIONS :
Picard's method - Taylor's series method	- Euler's method - Runge-Kutta Method -
Predictor - Corrector methods - Milne's met	thod.
Sections: 32.1, 32.2, 32.3, 32.4, 32.7, 32.8 and	1 32.9
UNIT - IV	Periods: 6L+2T=8
PROBABILITY AND DISTRIBUTIONS:	
Introduction - Basic terminology - Proba	bility and set notations - Addition law of
probability - Independent events - Baye'	's theorem - Random variable - Discrete
probability distribution: Binomial distributi	ion – Continuous probability distributions:
	(mean, variance, standard deviation and their
properties without proofs).	
Sections: 26.1, 26.2, 26.3, 26.4, 26.5, 26.6, 26.	.7, 26.8, 26.9, 26.14, 26.15 and 26.16.
UNIT - V	Periods: 6L+2T=8
SAMPLING THEORY:	remous: 0L+21=8
	sting a hypothesis – Level of significance –
1 0	large samples (Test of significance of single
-	limits for unknown mean – Small samples –
-	a sample mean – Significance test of difference
between sample means – chi square test – Goo	Juness of Int.
Sections: 27.1, 27.2, 27.3, 27.4, 27.5, 27.11	1, 27.12,27.13, 27.14, 27.15, 26.16, 27.17 and
27.18.	

TE	XT BOOKS:
1.	B. S. Grewal, Higher Engineering Mathematics, 43rd edition, Khanna publishers, 2017.
RE	FERENCE BOOKS:
1.	N P. Bali and Manish Goyal, A text book of Engineering mathematics, Laxmi publications,
2.	Erwin Kreyszig, Advanced Engineering Mathematics, 10th edition, John Wiley & Sons, 2011.
3.	R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3rdedition, Alpha
4.	George B. Thomas, Maurice D. Weir and Joel Hass, Thomas, Calculus, 13thedition, Pearson Publishers.
L	1

BASIC ELECTRICAL ENGINEERING										
Code	Category	Periods			Sessional	End Exam	Total	Credits		
		L	Т	Р	Marks	Marks	Marks			
MEC 222	ES	2	1	-	40	60	100	3		

Prerequisite: Basic fundamental knowledge of electricity.

Course Objectives: To acquaint the students with the analysis of circuits by using KCL & KVL, operation and applications of DC & AC machines.

Course	Outcomes: At the end of the course the student will be able to:
CO-1	Solve voltage across, current through and power supplied / absorbed by an electrical element.
CO-2	Analyze the behavior of the magnetic circuits.
CO-3	Determine the performance characteristics of D.C. generator.
CO-4	Identify the type of electrical DC motor used for that particular application.
CO-5	Apply the requirement of AC machines in power generation, transmission and distribution of electric power and other applications.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	3	1	3	2	1	1	-	-	-	2	1
CO-2	2	3	1	3	2	1	1	_	_	-	2	1
CO-3	2	3	1	3	2	1	1	_	-	-	2	1
CO-4	2	3	1	3	2	1	1	_	-	-	2	1
CO-5	2	3	1	3	2	1	1	-	-	-	2	1

II YEAR – II SEMESTER R20

PSO1	PSO2
1	-
1	-
2	-
2	-
2	-
	1 1 2 2

SYLL	ABUS
UNIT – I	Periods: 6L+3T=9
UNIT TITLE: ELECTRICAL CIRCUITS	
Circuit Elements, Basic Law's, KVL, KCL, I	Linearity Principle (Super Position), Mesh and
Nodal analysis, Thevenin's and Norton's theor	
	Deviedar (I + 2T, 0
UNIT – II	Periods: 6L+3T=9
UNIT TITLE: MAGNETIC CIRCUITS	
Definitions of magnetic circuit, Reluctance,	Magneto-motive force, magnetic flux, Simple
problems on magnetic circuits. Faraday's laws	of Electromagnetic Induction, Induced E.M.F.,
Dynamically induced E.M.F., Statically induce	d EMF, Self-Inductance and Mutual Inductance
UNIT – III	Periods: 6L+3T=9
UNIT TITLE: D.C. MACHINES	
Working principle of D.C. Generator, construct	tion of D.C. generator, E.M.F equation of D.C.
generator, Types of D.C. generators, Efficiency	, working of D.C. Motors, significance of back
E.M.F., Torque equation of D.C. Motors.	
UNIT – IV	Periods: 6L+3T=9
UNIT TITLE: TRANSFORMERS	
Working Principle of Transformer EME equ	ation of transformer, Losses, Efficiency and
regulation of Transformer, OC and SC tests.	auton of transformer, Losses, Efficiency and
regulation of fransionaler, of and be tests.	
	Poriods: 6L + 3T-0
UNIT – V UNIT TITLE: A. C. MACHINES	Periods: 6L+3T=9

R20

Working Principle of Induction Motor, Torque Equation, Slip-Torque Characteristics, Working Principle of Alternator, Voltage Regulation by EMF method.

TEXT BOOKS:

1.	V.K. MEHTA & ROHIT MEHTA Principles of Electrical Engineering S. Chand
	Publications 2nd edition.
2.	Principles of Electrical and Electronics Engineering by V. K. Mehta, S. Chand& Co.
REI	FERENCE BOOKS:
1.	Electrical and Electronics Technology- E. Hughes PSN Publ.
2.	J.B. Gupta A Text book of Electrical Engineering, S.K. Kataria& Sons Publications.
WE	B RESOURCES:
1.	https://www.electrically4u.com/electrical-books/
2.	https://circuitglobe.com/

APPLIED THERMAL ENGINEERING-1										
Code	Category Periods Sessional End Exam Total Credits									
		L	L T P		Marks	Marks	Marks			
MEC 223	PC	2	2 1 -		40	60	100	3		

Prerequisite: Engineering Mathematics, Engineering Mechanics, Basic Thermodynamics

Course Objectives: To acquaint the student with the fundamentals of pure substance, property variation due to phase change and apply these basics in the study of vapor power cycles, refrigeration cycles and thermal power plant equipment's like turbines and condensers.

Course	Course Outcomes: At the end of the course the student will be able to:						
CO-1	Identify the phase change process of a pure substance on property plots and determine the steam properties using steam table and mollier chart.						
CO-2	Analyze the working of a simple vapour cycle and further apply thermodynamic techniques to enhance its performance.						
CO-3	Distinguish the various classes of nozzles and condensers, evaluate their performance and further select suitable nozzle or condenser for specific application.						
CO-4	Compare the functioning of different classes of steam turbines, compounding techniques and also evaluate their performance.						
CO-5	Distinguish the various refrigeration cycles and analyze their performance and further explain psychometric terms, processes and different air conditioning systems.						

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	1	1							1	2		1
CO-2	2	2							1	2		1
CO-3	2	2							1	2		1
CO-4	2	2							1	2		1
CO-5	2	2				1	1		1	2		1

Course Outcomes	PSO1	PSO2
CO-1		
CO-2		
CO-3		
CO-4		
CO-5		

. <u>SYLLABUS</u>
UNIT - I Periods: 6L+3T=9
Properties of Pure Substance:
Definition of pure substance, phase change of a pure substance, property diagrams for phase
change process- T-v, p-v, p-T, T-s, h-s (Mollier diagram), p-v-T surface of pure substance,
formation of steam, terms relating to steam formation, external work done during
evaporation, internal latent heat, internal energy of steam, entropy of steam, thermodynamic
process of steam-isobaric and isentropic processes only, determination of dryness fraction-
throttling calorimeter, separating and throttling calorimeter
UNIT - II Periods: 6L+3T=9
Vapor Power Cycles:
Simple steam power cycle, Rankine cycle, steam rate, heat rate and thermal efficiency,
actual vapor cycle process, comparison of Rankine - Carnot cycles mean temperature of
heat addition, methods for improving efficiency of Rankine cycle - reheat cycle,
regenerative cycle, reheat-regenerative cycle, feed water heaters, characteristics of ideal
working fluid.
UNIT - III Periods: 6L+3T=9
Steam Nozzles & Steam Condensers:
Steam Nozzles: Types of nozzles- Flow through nozzles- Condition for maximum
discharge- Nozzle efficiency- Super saturated flow in nozzles- Relationship between area
discharge Rozzie erneieney Super saturated now in nozzies Relationship between area
velocity and pressure in nozzle flow- Under expansion & over expansion.
velocity and pressure in nozzle flow- Under expansion & over expansion.
velocity and pressure in nozzle flow- Under expansion & over expansion.Steam Condensers: Introduction, vacuum, Classification of condensers-Jet and surface
velocity and pressure in nozzle flow- Under expansion & over expansion. Steam Condensers: Introduction, vacuum, Classification of condensers-Jet and surface condensers, Sources and effects of air leakage in condensers, Vacuum efficiency and
velocity and pressure in nozzle flow- Under expansion & over expansion. Steam Condensers: Introduction, vacuum, Classification of condensers-Jet and surface condensers, Sources and effects of air leakage in condensers, Vacuum efficiency and
velocity and pressure in nozzle flow- Under expansion & over expansion. Steam Condensers: Introduction, vacuum, Classification of condensers-Jet and surface condensers, Sources and effects of air leakage in condensers, Vacuum efficiency and Condenser efficiency, Determination of mass of cooling water.
velocity and pressure in nozzle flow- Under expansion & over expansion. Steam Condensers: Introduction, vacuum, Classification of condensers-Jet and surface condensers, Sources and effects of air leakage in condensers, Vacuum efficiency and Condenser efficiency, Determination of mass of cooling water. UNIT - IV Periods: 6L+3T=9
velocity and pressure in nozzle flow- Under expansion & over expansion. Steam Condensers: Introduction, vacuum, Classification of condensers-Jet and surface condensers, Sources and effects of air leakage in condensers, Vacuum efficiency and Condenser efficiency, Determination of mass of cooling water. UNIT - IV Periods: 6L+3T=9 Steam Turbines: Periods: 6L+3T=9
velocity and pressure in nozzle flow- Under expansion & over expansion. Steam Condensers: Introduction, vacuum, Classification of condensers-Jet and surface condensers, Sources and effects of air leakage in condensers, Vacuum efficiency and Condenser efficiency, Determination of mass of cooling water. UNIT - IV Periods: 6L+3T=9 Steam Turbines: Introduction, classification of steam turbines, compounding of turbines. Impulse Turbines:
velocity and pressure in nozzle flow- Under expansion & over expansion. Steam Condensers: Introduction, vacuum, Classification of condensers-Jet and surface condensers, Sources and effects of air leakage in condensers, Vacuum efficiency and Condenser efficiency, Determination of mass of cooling water. UNIT - IV Periods: 6L+3T=9 Steam Turbines: Introduction, classification of steam turbines, compounding of turbines. Impulse Turbines: Velocity diagrams and performance parameters, condition for maximum blade efficiency for
velocity and pressure in nozzle flow- Under expansion & over expansion. Steam Condensers: Introduction, vacuum, Classification of condensers-Jet and surface condensers, Sources and effects of air leakage in condensers, Vacuum efficiency and Condenser efficiency, Determination of mass of cooling water. UNIT - IV Periods: 6L+3T=9
velocity and pressure in nozzle flow- Under expansion & over expansion. Steam Condensers: Introduction, vacuum, Classification of condensers-Jet and surface condensers, Sources and effects of air leakage in condensers, Vacuum efficiency and Condenser efficiency, Determination of mass of cooling water. UNIT - IV Periods: 6L+3T=9 Steam Turbines: Introduction, classification of steam turbines, compounding of turbines. Impulse Turbines:

Reaction Turbines: Velocity diagram, degree of reaction, Parson's reaction turbine, condition for maximum blade efficiency of Parson's turbine.

	IT - VPeriods: 8L+4T=12frigeration & Psychometry and air-conditioning:
	frigeration & Fsychometry and an -conditioning.
	formance, standard rating of refrigeration, air refrigeration systems, closed and open
-	tems, reversed Carnot cycle, Bell-collema cycle, vapor compression refrigeration
-	tem,T-s, p-h diagrams, factors effecting performance of vapor compression refrigeration
•	tem, simple Vapor absorption refrigeration system, properties of common refrigerants.
Pev	chometry and air-conditioning: Psychometric terms, psychometric chart and
	chometric processes, description of Summer, Winter and year around air
	ditioning systems.
con	
	XT BOOKS:
1.	R. K. Rajput, Thermal Engineering 10th edition, Laxmi publication (P) Ltd. 2017.
2.	P. K. Nag, Basic and Applied Thermodynamics 2nd edition, Tata McGraw Hill
DE	
KE	FERENCE BOOKS : Yunus A. Cengel and Michael A. Boles, Thermodynamics, An Engineering approach
1.	
	8th edition, Tata McGraw Hill Education (P) Ltd. 2015.
2.	G.Rogers and Mahew ,EngineeringThermodynamics,Work& Heat transfer
	4 th edition,Pearsons education India(P)Ltd.2002.
3.	Thermodynamics and Heat Engines volume 2-R.Yadav-Central book depot.
	Thermodynamics and treat Engines volume 2-K. Fadav-Central book depot.
W/F	EB RESOURCES:
1.	http://nptel.ac.in/courses/112105123/
2.	http://nptel.ac.in/courses/112104117
3.	http://nptel.ac.in/downloads/112105129/
2.	

	KINEMATICS OF MACHINERY									
Code	Category	Periods			Sessional	End Exam	Total	Credits		
		L	Т	Р	Marks	Marks	Marks			
MEC 224	PC	2	1	0	40	60	100	3		

Prerequisite: Engineering Mechanics

Course Objectives:

To acquaint the students with the fundamentals of mechanisms and their kinematic analysis (graphical, analytical & computational). Further this study is extended to specific applications like steering mechanisms, Hooke's joint, cams, gears and gear trains.

Course	Outcomes: At the end of the course the student will be able to:
CO-1	Identify the kinematic pairs & evaluate the mobility of a planar mechanism and further describe the inversions of 4-bar chain, single-slider and double slider crank chains.
CO-2	Analyze the given planar mechanism to calculate the kinematic parameters by Instantaneous centre, Relative velocity & Complex algebraic methods and further write the code for the above to plot the kinematic parameters.
CO-3	Analyze applications of mechanisms with lower pairs like straight line mechanisms, steering mechanisms, copier mechanism & Hooke's joint and further calculate the kinematic parameters of slider crank mechanism by Approximate analytical method.
CO-4	Draw cam profiles based on the prescribed motion of the follower and calculate the kinematic parameters of the follower for cams with specified contour.
CO-5	Calculate all the gear parameters related to spur gear, and determine the speed & torques in epicyclic gear trains using tabulation method.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	1										
CO-2	3	2										
CO-3	3	3			1							
CO-4	3	1										
CO-5	3	1										

Course Outcomes	PSO1	PSO2
CO-1	1	
CO-2	2	
CO-3	3	1
CO-4	1	
CO-5	1	

	SYLLABUS
UNIT - I	Periods: 8L+4T=
BASICS OF MECHANISMS :	
freedom, Mobility - Kutzbach cr	sic kinematic concepts and definitions – Degree of riterion, Gruebler's criterion – Grashof's Law – ain, slider crank chain and double slider crank chain antage – Transmission Angle.
UNIT - II	Periods: 6L+3T=
KINEMATIC ANALYSIS OF MI	
instantaneous center method, Body of Only for internal assessment:	etermination of linear and angular velocity using centrode and Space centrode.
UNIT - III	Periods: 6L+3T=
LOWER PAIRS	
Lower Pairs:-Pantograph – straight Watt mechanism. Steering Gear m principle of Davis & Ackerman's ste Hooke's joint: Ratio of shaft velocit – condition for equal speeds – Ang joint. Approximate Analytical Method of	t line motion mechanisms –Peaucellier mechanism- nechanisms-Condition for correct steering-Working eering gear mechanisms. ties – maximum and minimum speed of driven shaft sular acceleration of driven shaft – Double Hooke's
Lower Pairs:-Pantograph – straight Watt mechanism. Steering Gear m principle of Davis & Ackerman's ste Hooke's joint: Ratio of shaft velocit – condition for equal speeds – Ang joint. Approximate Analytical Method for velocity and angular acceleration	t line motion mechanisms –Peaucellier mechanism- nechanisms-Condition for correct steering-Working eering gear mechanisms. ties – maximum and minimum speed of driven shaft gular acceleration of driven shaft – Double Hooke's of Slider Crank Mechanism: r Velocity and Acceleration of the Piston & angular
Lower Pairs:-Pantograph – straight Watt mechanism. Steering Gear m principle of Davis & Ackerman's ste Hooke's joint: Ratio of shaft velocit – condition for equal speeds – Ang joint. Approximate Analytical Method of Approximate Analytical Method for velocity and angular acceleration mechanism.	t line motion mechanisms –Peaucellier mechanism- nechanisms-Condition for correct steering-Working eering gear mechanisms. ties – maximum and minimum speed of driven shaft gular acceleration of driven shaft – Double Hooke's of Slider Crank Mechanism: r Velocity and Acceleration of the Piston & angular
Lower Pairs:-Pantograph – straight Watt mechanism. Steering Gear m principle of Davis & Ackerman's ste Hooke's joint: Ratio of shaft velocit – condition for equal speeds – Ang joint. Approximate Analytical Method for velocity and angular acceleration mechanism. UNIT - IV HIGHER PAIRS	t line motion mechanisms –Peaucellier mechanism- echanisms-Condition for correct steering-Working eering gear mechanisms. ties – maximum and minimum speed of driven shaft rular acceleration of driven shaft – Double Hooke's of Slider Crank Mechanism: r Velocity and Acceleration of the Piston & angular of the connecting rod of reciprocating engine Periods: 6L+3T=
Lower Pairs:-Pantograph – straight Watt mechanism. Steering Gear m principle of Davis & Ackerman's ste Hooke's joint: Ratio of shaft velocit – condition for equal speeds – Ang joint. Approximate Analytical Method for velocity and angular acceleration mechanism. UNIT - IV HIGHER PAIRS Higher Pairs:-Classification of ca	t line motion mechanisms –Peaucellier mechanism- hechanisms-Condition for correct steering-Working eering gear mechanisms. ties – maximum and minimum speed of driven shaft gular acceleration of driven shaft – Double Hooke's of Slider Crank Mechanism: r Velocity and Acceleration of the Piston & angular of the connecting rod of reciprocating engine Periods: 6L+3T= ams & followers – terms used in radial cams –
Lower Pairs:-Pantograph – straight Watt mechanism. Steering Gear m principle of Davis & Ackerman's ste Hooke's joint: Ratio of shaft velocit – condition for equal speeds – Ang joint. Approximate Analytical Method for velocity and angular acceleration mechanism. UNIT - IV HIGHER PAIRS Higher Pairs:-Classification of ca displacement, velocity and accele	t line motion mechanisms –Peaucellier mechanism- hechanisms-Condition for correct steering-Working eering gear mechanisms. ties – maximum and minimum speed of driven shaft rular acceleration of driven shaft – Double Hooke's of Slider Crank Mechanism: r Velocity and Acceleration of the Piston & angular of the connecting rod of reciprocating engine Periods: 6L+3T

construction of cam profiles for radial and offset reciprocating follower (Knife edge, Roller and Flat face). Cams with specified contours – Tangent cam with roller follower

UNI	T - V Periods: 6L+3T=9
GE	ARS & GEAR TRAINS
Gea	rs: Classification of toothed wheels – terms used in gears - law of gearing –
velo	city of sliding of teeth – forms of teeth – Cycloidal and involute teeth– length of
path	of contact-arc of contact- contact ratio- interference in involute teeth - minimum
num	ber of teeth to avoid interference, Undercutting.
Gea	r trains:-Simple, compound and reverted gear trains – epicyclic gear train –
velo	city ratio of epicyclic gear train-sun and planet wheels – torques in epicyclic gear
trair	- Automobile Differential.
TEX	KT BOOKS:
1.	Rattan S.S, <i>Theory of Machines</i> , Tata McGraw-Hill Publishing Company Ltd., New Delhi,
	4th Edition, 2014.
2.	R.S.Khurmi & J.K.Gupta, <i>Theory of Machines</i> , S Chand & CO Ltd Publisher, 14 th edition.
	eunon.
REI	FERENCE BOOKS:
1.	Thomas Bevan, <i>Theory of Machines</i> , CBS Publishers & Distributors, New Delhi, 3rd edition.
2.	Ambekar A. G., Mechanism and Machine Theory, PHI, 2009.
3.	Shigley J. E. and John Joseph Uicker, Theory of Machines and Mechanisms,
	McGraw-Hill international edition, 2nd edition.

M	METAL CUTTING, MACHINE TOOLS & METROLOGY										
Code	Category	Periods			Sessional	End Exam	Total	Credits			
		L	Т	Р	Marks	Marks	Marks				
MEC 225	PC	3	0	0	40	60	100	3			

Prerequisite: Manufacturing Processes, Material Science/Metallurgy, Physics, Chemistry

Course Objectives:

To make the students acquainted with the basic concepts of metal cutting, tool nomenclature, standards and tool performance.

Further giving them an overall idea of constructional features of different machine tools such as lathe, drilling, milling, shaping and grinding and parameters related to the machining processes.

The course further deals with basics of Measurements, Metrology, Measuring devices and the concepts of various measurement systems & standards with regards to realistic applications.

Course	Outcomes: At the end of the course the student will be able to:
CO-1	Apply the basics of engineering in computing the cutting parameters, stress, strain, velocity and forces and identify the types of chips in machining process, evaluate
	tool-life and compute machining time and cost estimations.
	Explain the geometry of a single and multi point cutting tools, distinguish different
CO-2	machine tools – their kinematic systems and operations and further demonstrate the
	application of various tool and work holding devices.
CO-3	Identify various surface finishing operations applicable for work-pieces to meet the
0-5	required design specifications.
CO-4	Select suitable measuring device/gauge or comparator/method of inspection for
0.0-4	linear and angular dimensional measurements.
CO-5	Classify and choose appropriate method and instruments for inspection of
0.0-3	various gear and thread elements, and surface texture features.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	1	1	1					1	1		
CO-2	1	1	1	1					1	2		
CO-3	1	1	1	1					1	2		
CO-4	2	1	1	1					1	1		
CO-5	2	1	1	1					1	1		

Course Outcomes	PSO1	PSO2
CO-1	2	
CO-2	2	
CO-3	2	
CO-4	1	
CO-5	2	

	SYLLABUS	
UNIT – I		Periods: 12 L
Mechanics of Metal Cutting		
chips, orthogonal and obliqu forces – Dynamometers, Mercl cutting energy, stress and stra	he cutting, forces in metal c hant circle diagram, shear ang ain in chip. Friction in meta erface temperature, tool we	s, cutting parameters, types of putting, measurement of cutting le, velocity relationships, specific al cutting, temperature in metal ar, tool life, tool failure, tool hining.
UNIT-II Mashina Taola		Periods: 12 L
Machine Tools Geometry of single-point (AS	SA. ORS (ISO Old) & NRS	(ISO New) systems) and multi-
working principle, kinematic holding devices. Milling ma system, classification, operation	systems, classification, ope achines – Construction and ons, work holding & tool	ing machine's – Construction and rations, work holding & tool working principle, kinematic holding devices, dividing head, machines – Construction and
UNIT - III		Periods: 8 L
abrasives, bond materials, gr	principle of grinding machine it grade and structure of gri ning Operations – lapping, ho	es, merits and de-merits, types of nding wheels, specifications of oning, super finishing, polishing,
		Dawia da 9 I
UNIT – IV Linear & Angular Measurem	ents	Periods:8 L
Measurements Straightness n protractor, Sine bar, Angle	neasurement, Slip gauges, S gauges, Autocollimator, Ang nparators - Twisted strip mec	Squareness testing, Optical bevel de dekkor, Flatness measurement, chanical comparator, Optical lever natic comparator.
UNIT - V		Periods:8 L
Metrology of screw threads,	gears and surface texture	
Pitch, Limit gaugesfor internal spur gears, pitch, profile, too	and external threads, Tool ma	diameters and effective diameter, aker's microscope. Measurement of e: Introduction to surface finish, geometrical irregularities, Stylus

spur gears, pitch, profile, tooth thickness. Surface texture: Introduction to surface finish, Parameters, sampling length, Specification, Order of geometrical irregularities, Stylus instruments Profilometer, CMM, Tomlinson Surface meter and Taylor-Hobson Talysurf for surface roughness measurement.

II YEAR – II SEMESTER

TEXT BOOKS:

1.	W. A. Knight and G. Boothroyd, Fundamentals of Metal Machining and Machine						
	Tools, CRC Press, 2006.						
2.	Work shop technology (Machine Tools) Vol. II (10th Edition) by B.S Raghu Vamshi,						
	Dhanpat Rai & Co (P) Ltd.						
3.	I.C Gupta, A text-book of Engineering Metrology, Dhanpat Rai & Sons, Delhi						
REF	FERENCE BOOKS:						
1.	Production Engineering by P.C. Sharma, S. Chand and Company						
2.	Metal cutting and Machine Tool Engineering, Pakirappa, Durga Publishing House.						
3.	Metal Cutting Principles by M.C. Shaw, MIT Press, Cambridge.						
4.	Advanced Methods of Machining by J. A. Mc Geough, Chapman & Hall Publishers.						
5.	Manufacturing Engineering & Technology, 7th Edition, Serope Kalpakjian, Steven						
	Schmid, Pearson,						
6.	Fundamentals Of Modern Manufacturing: Materials, Processes, And Systems, Mikell						
	P. Groover.						
WE	B RESOURCES:						
1.	https://www.slideshare.net/ArvindChavan/introduction-to-metrology-106089384						
2.	https://nptel.ac.in/courses/112/106/112106179/						

COMPUTER AIDED MODELLING									
Code	Category	Cotocom Periods		ls	Sessional	End Exam	Total	Credits	
Code		L	Т	Р	Marks	Marks	Marks	Cleans	
MEC 226	SC	1	-	2	50	50	100	2	

Prerequisite: Engineering Graphics, Advanced Engineering Graphics

Course Objectives: The course is designed to familiarize the student with the fundamentals of Computer Aided Modelling software and applying it to create 3D Models of Machine parts ,Assembled models and project orthographic projections of sectioned views and assembly views. The course is also finally intended to impart machine drawing of key couplings, pipe fitting and machine components and production drawing using the software.

Course	Outcomes: At the end of the course the student will be able to:				
CO-1	Create 2D sketches required for 3D modelling using 3D modelling software				
CO-2	Create 3D models of Machine parts using 3D modelling software				
CO-3	Create assembled models of keys, pipe fittings and machine components using a				
	3D modelling software				
CO-4	Create orthographic views from a 3D Model using a 3D modelling software				
CO-5	Prepare Productions drawings and process sheets of machine components.				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	1	1	1		2							1
CO-2	1	1	1		2							1
CO-3	1	1	1		2							1
CO-4	1	1	1		2							1
CO-5	1	1	1		2							1

Course Outcomes	PSO1	PSO2
CO-1	1	2
CO-2	1	2
CO-3	1	2
CO-4	1	2
CO-5	1	2

<u>S</u>	<u>YLLABUS</u>
Module-I	
Introduction to 3D modelling software:	
Modeling- CSG, sweep represent	frame Modeling - Surface Modeling - Solid ntation; 2D and 3D transformations, windowing view operations, types of modelling.
Week 2: Reference planes, Sketcher, Sket of sketches. Exercise:2 Exercise:3	ch procedure, sketch tools, modify and constraints
Exercise:4	
Module- II	
Part Modelling :	ing and remaring of the material
Week 3: a) Extrusion tools: Creating, addi	
	ting, adding and removing of the material.
Exercise: 5	
Exercise: 6	
5	rence planes, modify features- fillet, chamfer, draft.
Exercise:7	
Exercise:8	
Exercise:9	
Week 5: Other features-hole, shell, sweep,	loft, pattern.
Exercise:10	
Exercise:11	
Exercise:12	
Exercise:13	
Module- III	
Assembly modelling:	
Week 6: Assembly layout, Bottom-UP Ass	sembly -importing part models assembly
constraints-Fix, Mate/Contact, Ta	
Exercise:14	ingential
Exercise:14	
	any north charleing interference
Week 7: Top-Down Assembly- creating ne	ew parts, checking interference
Exercise:16	
Exercise:17	
Module- IV	
Drafting and Presentation:	I
	ving sheet, Title block, Projection view, Section-
view, Detail View, Clipping View	w, Break View, Dimension, Annotation, Ballon f Materials), Creating Exploded views of assembly.
Exercise:18	
Exercise:18 Exercise:19	

Module- V
Machine Drawing and Production Drawing Exercises:
Week 9: Assembly Drawing: Key couplings
Exercise:21
Exercise:22
Week 10: Assembly drawing: shaft couplings
Exercise:23
Exercise:24
Week 11: Assembly drawings of machine components
Exercise:25
Exercise:26
Week 12: Limits fits tolerances, geometrical tolerance, surface roughness, process sheet
Exercise:27
Exercise:28
REFERENCE BOOKS:
1. CAD/CAM- Computer Aided Design & Manufacturing, by M.D.Groover
& E.W.Zimmer, 1stEdition, PEARSON Publication, 2003.
2. Lab Manual for Computer Aided Modelling
3. CATIA V5 Design Fundamentals Jaecheol Koh ONSIA Inc. ISBN-10:14776889028
4. Mastering SolidWorks by Matt Lombard, 2019 John Wiley & Sons.
5. N. D. Bhatt "Machine Drawing" V. M. Panchal, Charotar Publishing House Pvt. Ltd
6. K.L Narayana, P. Kannaiah and K. Venkata Reddy "Machine Drawing" by, New age
international Publishers.
WEB RESOURCES:
1. http://www.rajaroy.co.in/p/machine-drawing.html

MACHINE TOOLS LAB										
Code	Category	Periods			Sessional	End Exam	Total	Credits		
		L	Т	Р	Marks	Marks	Marks			
MEC 227	PC	0 0 3		50	50	100	1.5			

Course Objective: To study and practice the various operations that can be performed on Lathe, also to investigate the influence of machining parameters on chip formation, cutting forces and shear angle on different Machine tools.

Course	Outcomes: At the end of the course the student will be able to:
CO-1	Perform facing, turning, taper turning, knurling, forming and thread cutting operations on the given work-piece using lathe.
CO-2	Analyse the characteristics of chips produced through machining process by varying the machining parameters on various work-piece materials.
CO-3	Measure and analyse the cutting forces, shear angle and temperature experienced by the cutting tool for varying cutting parameters in machine tools (Lathe and Shaper).
CO-4	Perform drilling and tapping operations in Drilling machine and gear cutting in Milling machine.
CO-5	Generate tool geometry (tool angles) on a tool blank using Tool and Cutter Grinder and also measure surface roughness of a flat surface grinded by Surface grinding machine.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2		1	2				2		3		
CO-2	2	1		3				2		3		
CO-3	2	1		3				2		3		
CO-4	2	1	1	1				2		3		
CO-5	2	1	1	3				2		3		

Course Outcomes	PSO1	PSO2
CO-1	2	1
CO-2	2	2
CO-3	2	2
CO-4	2	1
CO-5	2	1

S.No.	Name of the Experiment	СО
1	Step turning on Lathe	CO-1
2	Taper turning and knurling on Lathe	CO-1
3	Thread cutting and forming on Lathe	CO-1
4	Step turning and knurling on a round bar using Capstan Lathe	CO-1
5	Experimental study of chip formation in turning	CO-2
6	Measurement of cutting forces on Lathe	CO-3
7	Measurement of shear angle on Lathe	CO-3
8	Measurement of shear angle on Shaper	CO-3
9	Measurement of cutting tool temperature on Lathe	CO-3
10	Drilling and Tapping on Radial Drilling Machine	CO-4
11	Spur Gear cutting in milling machine	CO-4
12	Grinding of a single point cutting tool	CO-5
13	Surface roughness measurement by Talysurf surface roughness tester	CO-5

List of Experiments

REFERENCE BOOKS:

1. Manufacturing Technology, Volume 2 and 3rd Edition, P.N.Rao, Mc Graw-Hill Book

BASIC ELECTRICAL & ELECTRONICS ENGINEERING LAB								
Code	Category	Periods			Sessional		Total	Credits
		L	Т	Р	Marks	Marks	Marks	
MEC 228	ES	-	-	3	50	-	50	1.5

Prerequisite: Basic fundamental knowledge of electrical and electronics.

Course Objectives: To acquaint the students with the analysis of circuits by using KCL & KVL, operation and applications of DC & AC machines, various indicating instruments and the concepts of diodes & transistors

Course Outcomes: At the end of the course the student will be able to:					
CO-1	Ability to design and analyze simple electrical circuits				
CO-2	Ability to determine the speed characteristic of different electrical machines.				
CO-3	To design simple circuits involving diodes and transistors.				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	3	1	3	2	1	1	-	-	-	2	1
CO-2	2	3	1	3	2	1	1	-	-	-	2	1
CO-3	2	3	1	3	2	1	1	-	-	-	2	1

Course Outcomes	PSO1	PSO2
CO-1	1	
CO-2	1	-

II YEAR – II SEMESTER

CO-3	2	-

	<u>SYLLABUS</u>					
S. No.	Name of the Experiment					
1.	Verification of Ohm's Law					
2.	Verification of KVL and KCL.					
3.	Load test on DC Shunt machine.					
4.	Swinburne's test.					
5.	OC and SC test on Transformer.					
6.	Load test on 3 Phase Induction Motor.					
7.	Regulation of alternator by EMF method.					
8.	V-I Characteristics of Diode.					
9.	Half wave and Full wave Diode rectifier circuit.					
10.	Transistor based circuits.					
11.	Study of CRO and measurement of AC signals.					
12.	Study of logic gates (AND, OR and NOT)					