|                |                                               | I            | II-YEA  | R-I-SEN  | IESTER | ł    |    |       |           |                                    |                     |         |
|----------------|-----------------------------------------------|--------------|---------|----------|--------|------|----|-------|-----------|------------------------------------|---------------------|---------|
| Course<br>Code | Title of the course                           | Catego<br>ry | Periods |          |        |      |    |       | Sessional | Semester<br>end                    | Total               | Credits |
|                |                                               |              | L       | Т        | Р      | E    | 0  | Total | s Marks   | Exam<br>marks                      | Marks               |         |
| MEC 311        | ***Open Elective-I                            | OE           | 3       | 0        | 0      | 1    | 2  | 6     | 40        | 60                                 | 100                 | 3       |
| MEC 312        | Humanities Elective                           | HS           | 3       | 0        | 0      | 1    | 2  | 6     | 40        | 60                                 | 100                 | 3       |
| MEC 313        | Design Thinking                               | ES           | 3       | 0        | 0      | 1    | 2  | 6     | 40        | 60                                 | 100                 | 3       |
| MEC 314        | Dynamics of Machinery                         | PC           | 2       | 1        | 0      | 2    | 4  | 9     | 40        | 60                                 | 100                 | 3       |
| MEC 315        | Applied Thermal Engineering-II                | PC           | 2       | 1        | 0      | 2    | 4  | 9     | 40        | 60                                 | 100                 | 3       |
| MEC 316        | Design of Machine Elements-I                  | PC           | 2       | 1        | 0      | 2    | 4  | 9     | 40        | 60                                 | 100                 | 3       |
| MEC 317        | Kinematics and Dynamics of Machinery<br>Lab   | PC           | 0       | 0        | 3      | 0    | 1  | 4     | 50        | 50                                 | 100                 | 1.5     |
| MEC 318        | Thermal Engineering Lab                       | PC           | 0       | 0        | 3      | 0    | 1  | 4     | 50        | 50                                 | 100                 | 1.5     |
| MEC 319        | Quantitative Aptitude-I &<br>Verbal Aptitude  | HS           | 0       | 0        | 3      | 1    | 3  | 7     | 100       | 0                                  | 100                 | 1.5     |
| MEC 320        | Industrial Training- I                        | PR           | 0       | 0        | 0      | 0    | 0  | 0     |           | 100                                | 100                 | 2       |
|                | Total                                         |              | 15      | 3        | 9      | 10   | 23 | 60    | 440       | 560                                | 1000                | 24.5    |
|                |                                               | l            | II-YEAF | R-II-SEN | NESTER | र    |    |       |           |                                    |                     |         |
| Course<br>Code | Title of the course                           | Catego<br>ry |         |          | Per    | iods |    |       | Sessional | Semester<br>I end<br>Exam<br>marks | r<br>Total<br>Marks | Credits |
|                |                                               |              | L       | Т        | Р      | Е    | 0  | Total | s Marks   |                                    |                     |         |
| MEC 321        | ***Open Elective- II                          | OE           | 3       | 0        | 0      | 0    | 2  | 5     | 50        | 50                                 | 100                 | 3       |
| MEC 322        | Professional Elective-I                       | PE           | 3       | 0        | 0      | 1    | 2  | 6     | 40        | 60                                 | 100                 | 3       |
| MEC 323        | Professional Elective-II                      | PE           | 3       | 0        | 0      | 1    | 3  | 7     | 40        | 60                                 | 100                 | 3       |
| MEC 324        | Finite Element Analysis                       | SC           | 1       | 0        | 2      | 2    | 4  | 10    | 40        | 60                                 | 100                 | 2       |
| MEC 325        | Fluid Mechanics & Hydraulic Machinery         | PC           | 2       | 1        | 0      | 2    | 3  | 8     | 40        | 60                                 | 100                 | 3       |
| MEC 326        | Design of Machine Elements-II                 | PC           | 2       | 1        | 0      | 2    | 4  | 9     | 40        | 60                                 | 100                 | 3       |
| MEC 327        | Fluid Mechanics &<br>Hydraulic Machinery -Lab | PC           | 0       | 0        | 3      | 0    | 1  | 4     | 50        | 50                                 | 100                 | 1.5     |
| MEC 328        | Computer Aided Design &<br>Manufacturing Lab  | SC           | 1       | 0        | 3      | 0    | 2  | 5     | 50        | 50                                 | 100                 | 2.5     |
| MEC 329        | Quantitative<br>Aptitude-II & Soft Skills     | HS           | 0       | 0        | 3      | 2    | 3  | 8     | 100       | 0                                  | 100                 | 1.5     |
|                | Total                                         |              | 15      | 2        | 11     | 10   | 24 | 62    | 450       | 450                                | 900                 | 22.5    |

| <b>Professional Elective-</b>             | Production                              | Gas Turbines & Jet                                    | Automation in                         | Non-Destructive                         |
|-------------------------------------------|-----------------------------------------|-------------------------------------------------------|---------------------------------------|-----------------------------------------|
| I                                         | Planning &<br>Control                   | Proplusions                                           | manufacturing                         | Testing                                 |
| Professional Elective-<br>II              | Refrigeration &<br>Air- conditioning    | Power plant<br>Engineering                            | Nano<br>Technology                    | Quality &<br>Reliability<br>engineering |
| Professional Elective-<br>III             | Mechanical<br>Measurements              | Computatinal Fluid<br>dynamics                        | Condition<br>monitoring               | Industrial tribology                    |
| Professional Elective-<br>IV              | Non-Conventional<br>Energy Sources      | Managerial<br>Economics<br>& Financial<br>Accountancy | Unconventiona<br>l machine<br>process | Artificial<br>intelligence              |
| Professional Elective-<br>V               | Operations<br>Research                  | Alternate fuels                                       | Advanced<br>mechanics of<br>materials | Product Design&<br>Manufacturing        |
| Humanities Electives                      | Industrial<br>Engineering<br>Management | Stastical Quality<br>Control                          | Enterprenuersh<br>ip development      | Suppy chain<br>management               |
| ***Open Elective-<br>III/Emerging subject | Mechatronics                            |                                                       |                                       |                                         |
| ***Open Elective-<br>IV/Emerging subject  | Robotics                                |                                                       |                                       |                                         |

**Note:** Open electives-I & II are offered by other departments. The CSE/IT departments are requested to offer PYTHON-programming & Data structures as open electives.

**Note:** In Open electives-III & IV/Emerging subjects -only emerging subjects will be offered by the parent department. The subjects could be Mechatronics, Robotics, Additive manufacturing,Condition monitoring etc. (will be decided by the department)

| INDUSTRIAL ENGINEERING AND MANAGEMENT<br>(HUMANITIES ELECTIVE) |          |              |   |   |       |   |   |           |          |              |         |
|----------------------------------------------------------------|----------|--------------|---|---|-------|---|---|-----------|----------|--------------|---------|
| Code                                                           | Category | Periods/Week |   |   | Total |   |   | Sessional | End Exam | Total Credit |         |
| Code                                                           |          | L            | Т | Р | L     | Т | Р | Marks     | Marks    | Marks        | Cicuits |
| MEC312(A)                                                      | HS       | 3            | - | - | 48    | - | - | 40        | 60       | 100          | 3       |

Prerequisite: Machine Tools Lab

**Course Objectives:** The course is indented to impart knowledge on the basics of management functions and principles, fundamentals of production planning and control, work study, selection of material handling equipment, various dispute acts and quality assessment techniques.

| Course | <b>Course Outcomes:</b> At the end of the course the student will be able to:       |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO-1   | Apply functions and principles of management to private/public sectors.             |  |  |  |  |  |  |
|        |                                                                                     |  |  |  |  |  |  |
| CO-2   | Employ the techniques of production planning and control to manage production       |  |  |  |  |  |  |
|        | operations.                                                                         |  |  |  |  |  |  |
| CO-3   | Apply work measurement techniques and method study procedures for productivity      |  |  |  |  |  |  |
|        | improvement.                                                                        |  |  |  |  |  |  |
| CO-4   | Employ the principles of material handling, procurement and further understand      |  |  |  |  |  |  |
|        | the significance of acts pertaining to industrial relations                         |  |  |  |  |  |  |
| CO-5   | Evaluate quality of product using statistical process control charts and acceptance |  |  |  |  |  |  |
|        | sampling plans.                                                                     |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 1   | -   | -   | -   | -   | 2   | -   | 2   | -   | -    | 2    | 2    |
| CO-2     | 2   | 1   | -   | -   | -   | 2   | -   | -   | -   | -    | 2    | 2    |
| CO-3     | 2   | 2   | -   | -   | -   | 1   | -   | -   | -   | -    | 2    | 2    |
| CO-4     | 1   | -   | -   | _   | -   | 2   | -   | 2   | -   | _    | 2    | 2    |
| CO-5     | 2   | 2   | 1   | -   | -   | 2   | -   | -   | -   | -    | 2    | 2    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | -    | 2    |
| CO-2            | -    | 2    |
| CO-3            | -    | 2    |
| CO-4            | -    | 2    |
| CO-5            | -    | 2    |

| <u>SYLL</u>                                                                                                                                                                                                        | ABUS                                                                                      |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|
| UNIT – I<br>CONCEPTS OF INDUSTRIAL MANACEN                                                                                                                                                                         | Periods: 10L+01=10                                                                        |  |  |  |  |  |
| PERSONNEL MANAGEMENT                                                                                                                                                                                               | MENT & INTRODUCTION TO                                                                    |  |  |  |  |  |
| Concepts of Industrial Management: Princ                                                                                                                                                                           | iples of management- Growth of management                                                 |  |  |  |  |  |
| hought, Functions of management, Principles of organization, Types of organization and                                                                                                                             |                                                                                           |  |  |  |  |  |
| committees.                                                                                                                                                                                                        |                                                                                           |  |  |  |  |  |
| Introduction to Personnel Management: F                                                                                                                                                                            | unctions, Motivation, Theories of motivation,                                             |  |  |  |  |  |
| Hawthrone studies, Discipline in industry, Pro-                                                                                                                                                                    | motion, Transfer, lay off and discharge, Labour                                           |  |  |  |  |  |
| turnover.                                                                                                                                                                                                          |                                                                                           |  |  |  |  |  |
|                                                                                                                                                                                                                    |                                                                                           |  |  |  |  |  |
| UNIT - II                                                                                                                                                                                                          | Periods: 10L+0T=10                                                                        |  |  |  |  |  |
| PRODUCTION PLANNING AND CONTR                                                                                                                                                                                      | OL & PLANT LAYOUT                                                                         |  |  |  |  |  |
| Production Planning and Control: Types of                                                                                                                                                                          | productions, Production cycle, Product design                                             |  |  |  |  |  |
| and development - Process planning, For                                                                                                                                                                            | ecasting, Loading, Scheduling, Dispatching,                                               |  |  |  |  |  |
| Routing- Simple problems. Materials Planning – ABC analysis – Incoming materials control                                                                                                                           |                                                                                           |  |  |  |  |  |
| - Kanban system - Just in time. MRP systems- Master Production Schedule - Bill of                                                                                                                                  |                                                                                           |  |  |  |  |  |
| Materials – MRP II.                                                                                                                                                                                                |                                                                                           |  |  |  |  |  |
| Plant Layout: Plant location - Factors - Plant layout - Types - Process Layout, Product                                                                                                                            |                                                                                           |  |  |  |  |  |
| layout, Combined Layout, Project Layout - Lay                                                                                                                                                                      | yout design process.                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                    |                                                                                           |  |  |  |  |  |
| UNIT – III                                                                                                                                                                                                         | Periods: 10L+0T=10                                                                        |  |  |  |  |  |
| WORK STUDY                                                                                                                                                                                                         |                                                                                           |  |  |  |  |  |
| Introduction to work study – Method study –                                                                                                                                                                        | - Recording Techniques – charts & Diagrams                                                |  |  |  |  |  |
| Time study – stopwatch time study – Standard                                                                                                                                                                       | data - Method Time Measurement (M-T-M) –                                                  |  |  |  |  |  |
| simple problems – Ergonomics.                                                                                                                                                                                      |                                                                                           |  |  |  |  |  |
|                                                                                                                                                                                                                    | Dowinday 121 (0T-12                                                                       |  |  |  |  |  |
| MATERIALS HANDLING AND MANAGE                                                                                                                                                                                      | Terrous: 12L+01=12                                                                        |  |  |  |  |  |
| Materials Handling and Management: Princi                                                                                                                                                                          | ples. Concept of unit load. Containerization.                                             |  |  |  |  |  |
| Pelletization Selection of material handling                                                                                                                                                                       | equipment. Applications of belt conveyors                                                 |  |  |  |  |  |
| Cranes Forklift trucks in industry Purchasing                                                                                                                                                                      | Objectives of purchasing department Buying                                                |  |  |  |  |  |
| techniques Purchase procedure Stores and m                                                                                                                                                                         | aterial control Receipt and issue of materials                                            |  |  |  |  |  |
| Store records                                                                                                                                                                                                      |                                                                                           |  |  |  |  |  |
| Industrial relations: Trade unions Industrial                                                                                                                                                                      | disputes Strikes Lock-out Picketing Gherro                                                |  |  |  |  |  |
|                                                                                                                                                                                                                    |                                                                                           |  |  |  |  |  |
| Settlement of industrial disputes Collective                                                                                                                                                                       | hargaining Industrial dispute act 1947 and                                                |  |  |  |  |  |
| Settlement of industrial disputes, Collective factories act 1948                                                                                                                                                   | bargaining, Industrial dispute act 1947 and                                               |  |  |  |  |  |
| Settlement of industrial disputes, Collective factories act 1948.                                                                                                                                                  | bargaining, Industrial dispute act 1947 and                                               |  |  |  |  |  |
| Settlement of industrial disputes, Collective factories act 1948.                                                                                                                                                  | bargaining, Industrial dispute act 1947 and<br>Periods: 6L+0T-6                           |  |  |  |  |  |
| Settlement of industrial disputes, Collective<br>factories act 1948.<br>UNIT – V<br>STATISTICAL OUALITY CONTROL                                                                                                    | bargaining, Industrial dispute act 1947 and<br>Periods: 6L+0T=6                           |  |  |  |  |  |
| Settlement of industrial disputes, Collective<br>factories act 1948.<br>UNIT – V<br>STATISTICAL QUALITY CONTROL<br>Control charts of variables and attributes (1                                                   | Periods: 6L+0T=6<br>D-chart, x-bar & R-chart, U-chart, KU-chart,                          |  |  |  |  |  |
| Settlement of industrial disputes, Collective<br>factories act 1948.<br>UNIT – V<br>STATISTICAL QUALITY CONTROL<br>Control charts of variables and attributes (J<br>C-chart) (Use of formulae only). Single and do | Periods: 6L+0T=6<br>p-chart, x-bar & R-chart, U-chart, KU-chart,<br>puble sampling plans. |  |  |  |  |  |

| TEX | XT BOOKS:                                                                           |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1.  | Dr.O.P.Khanna, Industrial Engineering Management, 4th edition, Dhanpat Rai          |  |  |  |  |  |  |  |
|     | publications.                                                                       |  |  |  |  |  |  |  |
| 2.  | Martand Teslang, Industrial Engineering and Production Management, 2 nd Edition, S. |  |  |  |  |  |  |  |
|     | Chand & Co.                                                                         |  |  |  |  |  |  |  |
|     |                                                                                     |  |  |  |  |  |  |  |
| REF | FERENCE BOOKS:                                                                      |  |  |  |  |  |  |  |
| 1.  | Koontz & Donnel, Principles of Management, 3rd edition, Mc-Graw Hill Publishers.    |  |  |  |  |  |  |  |
| 2.  | Everette Adam & Ronald Ebert, Production and Operations Management, Prentice        |  |  |  |  |  |  |  |
|     | Hall, 1992.                                                                         |  |  |  |  |  |  |  |
|     |                                                                                     |  |  |  |  |  |  |  |
| WE  | B RESOURCES:                                                                        |  |  |  |  |  |  |  |
| 1.  | www.iems.ucf.edu/                                                                   |  |  |  |  |  |  |  |
| 2.  | www.iise.org/                                                                       |  |  |  |  |  |  |  |
| 3.  | www.iiie-india.com/                                                                 |  |  |  |  |  |  |  |
|     |                                                                                     |  |  |  |  |  |  |  |

|                       | STATISTICAL QUALITY CONTROL |              |   |   |       |    |   |           |          |       |         |
|-----------------------|-----------------------------|--------------|---|---|-------|----|---|-----------|----------|-------|---------|
| (HUMANITIES ELECTIVE) |                             |              |   |   |       |    |   |           |          |       |         |
| Code                  | Category                    | Periods/Week |   |   | Total |    |   | Sessional | End Exam | Total | Credits |
|                       |                             | L            | Т | Р | L     | Т  | Р | Marks     | Marks    | Marks | creans  |
| MEC312(B)             | HS                          | 2            | 1 | - | 32    | 16 | - | 40        | 60       | 100   | 3       |

**Prerequisites:** Engineering Mathematics; Manufacturing Processes; Metal Cutting, Machine Tools & Metrology.

**Course Objectives:** To acquaint the students with the basic knowledge of statistical quality control.

| Course       | Course Outcomes: At the end of the course the student will be able to:                                                                                                                                                                |  |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CO-1         | Apply the concepts of statistical quality control such as off-line and on-line quality control, quality management philosophies, quality costs, Taguchi's loss function and six sigma concept for quality engineering and management. |  |  |  |  |  |  |  |
| CO-2         | Produce and analyze the control charts for variables to evaluate the process performance.                                                                                                                                             |  |  |  |  |  |  |  |
| CO-3         | Analyse and make conclusions about the process capability.                                                                                                                                                                            |  |  |  |  |  |  |  |
| <b>CO</b> -4 | Prepare and analyse the control charts for attributes to conclude about the process control.                                                                                                                                          |  |  |  |  |  |  |  |
| CO-5         | Design, apply and analyze the sampling plans to judge the quality of the products.                                                                                                                                                    |  |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 2   | 2   | 2   | -   | -   | -   | 2   | -   | -   | -    | 3    | -    |
| CO-2     | 3   | 3   | 3   | -   | -   | -   | 2   | -   | -   | -    | 3    | -    |
| CO-3     | 3   | 3   | 3   | -   | -   | -   | 2   | -   | -   | -    | 3    | -    |
| CO-4     | 3   | 3   | 3   | -   | -   | -   | 2   | -   | -   | -    | 3    | -    |
| CO-5     | 3   | 3   | 3   | -   | -   | -   | 2   | -   | -   | -    | 3    | -    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 2    | -    |
| CO-2            | 3    | -    |
| CO-3            | 3    | -    |
| CO-4            | 3    | -    |
| CO-5            | 3    | -    |

CO - Course Outcome; PO - Program Outcome; PSO - Program Specific Outcome; Level - 1: Low, 2: Medium, 3: High

R20

| SYLI                                                               | ABUS                                                       |
|--------------------------------------------------------------------|------------------------------------------------------------|
| UNIT - I                                                           | Periods: 7L+3T=10                                          |
| <b>INTRODUCTION TO STATISTICAL QU</b>                              | ALITY CONTROL:                                             |
| Introduction to quality & its definitions; Off-                    | line and on-line quality control; Quality costs;           |
| Deming's, Crosby's & Juran's philosophies                          | ; Taguchi's loss function; Introduction to six             |
| sigma concept.                                                     |                                                            |
|                                                                    |                                                            |
| UNIT - II                                                          | Periods: 7L+4T =11                                         |
| <b>CONTROL CHARTS FOR VARIABLES:</b>                               |                                                            |
| Shewhart's normal bowl; Control charts for va                      | riables - $\bar{x}$ , R and sigma control charts; Theory   |
| of runs - ARL and ATS, Type-I and type-II er                       | rors.                                                      |
|                                                                    |                                                            |
| UNIT - III                                                         | Periods: 4L+2T =6                                          |
| PROCESS CAPABILITY ANALYSIS:                                       |                                                            |
| Process capability analysis using frequency di                     | stribution and control charts; Process capability          |
| ratios - $C_p$ and $C_{pk}$ : Process capability ratios            | for nominal the better type, smaller the better            |
| type and larger the better type product specific                   | ations                                                     |
| type and mager the sector type product speens                      |                                                            |
|                                                                    | Poriods: 71 + 3T - 10                                      |
| CONTROL CHARTS FOR ATTRIBUTES                                      | · · · · · · · · · · · · · · · · · · ·                      |
| Control charts for attributes - p chart, standar                   | •<br>dized p chart, np chart, c chart, u chart, demerit    |
| control chart                                                      |                                                            |
|                                                                    |                                                            |
|                                                                    | Deviador 71 + 4T - 11                                      |
| ACCEPTANCE SAMPLING PLANS                                          | renous. /L+41 –11                                          |
| Acceptance Sampling plans - single double                          | multiple and sequential sampling plans: Design             |
| of single and sequential sampling plans: Paoti                     | fying inspection AOO AOOI and ATI                          |
| of single and sequential sampling plans, Recti                     | Tying inspection - AOQ, AOQL and ATT.                      |
|                                                                    |                                                            |
| TEXT BOOKS:                                                        |                                                            |
| 1. M. Mahajan, "Statistical Quality Contro                         | l", Dhanpatrai & Co. Pvt. Ltd., 2016 edition.              |
| 2. Amitava Mitra, "Fundamentals of Quali                           | ty Control and Improvement", 3 <sup>rd</sup> edition, John |
| Wiley<br>DEFEDENCE BOOKS                                           |                                                            |
| <b>LEFERENCE DOORS</b> .                                           | Statistical Quality Control" 6 <sup>th</sup> adition John  |
| 1. D. C. Montgomery, <i>Introduction to</i><br>Wiley & sons $2009$ | Statistical Quality Control, 6 Edition, John               |
| 2 F I Grant "Introduction to Statistical (                         | Quality Control" 7th adition Tata Mc Graw Hill             |
| Co Ltd 2000                                                        | guardy Control , / Edition, Tata Mc-Oraw Tim               |
| Co. Etd., 2000.                                                    |                                                            |
| WEB RESOURCES:                                                     |                                                            |
| 1. https://nptel.ac.in/courses/110105088                           |                                                            |
| 2. https://nptel.ac.in/courses/110101010                           |                                                            |
|                                                                    |                                                            |

|                       | ENTREPRENEURSHIP DEVELOPMENT |              |   |   |       |   |   |           |          |       |         |
|-----------------------|------------------------------|--------------|---|---|-------|---|---|-----------|----------|-------|---------|
| (HUMANITIES ELECTIVE) |                              |              |   |   |       |   |   |           |          |       |         |
| Code                  | Category                     | Periods/Week |   |   | Total |   |   | Sessional | End Exam | Total | Credits |
| Code                  | Category                     | L            | Т | Р | L     | Т | Р | Marks     | Marks    | Marks | cicuits |
| MEC312(C)             | HS                           | 3            | - | - | 48    | - | - | 40        | 60       | 100   | 3       |

Prerequisite: Human Values and Professional Ethics

**Course Objectives:** To develop necessary knowledge and skills required for organizing and carrying out entrepreneurial activities, to develop the ability of analyzing and understanding business situations in which entrepreneurs act.

| Course ( | Course Outcomes: At the end of the course the student will be able to                        |  |  |  |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO-1     | Demonstrate entrepreneurship qualities and skills.                                           |  |  |  |  |  |  |  |  |
| CO-2     | Explain entrepreneurship policies.                                                           |  |  |  |  |  |  |  |  |
| CO-3     | Develop skills in preparation and evolution of entrepreneurship criteria's.                  |  |  |  |  |  |  |  |  |
| CO-4     | Analyze marketing strategies of entrepreneurship.                                            |  |  |  |  |  |  |  |  |
| CO-5     | Demonstrate preventive measures to be followed for effective management of entrepreneurship. |  |  |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | -   | -   | -   | -   | -   | 2   | 2   | 1   | 2   | 2    | 2    | 2    |
| CO-2     | -   | -   | -   | -   | -   | 2   | 2   | 1   | 2   | 2    | 2    | 2    |
| CO-3     | -   | -   | -   | -   | -   | 2   | 2   | 1   | 2   | 2    | 2    | 2    |
| CO-4     | -   | -   | -   | -   | -   | 2   | 2   | 1   | 2   | 2    | 2    | 2    |
| CO-5     | -   | -   | -   | -   | -   | 2   | 2   | 1   | 2   | 2    | 2    | 2    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | -    | -    |
| CO-2            | -    | -    |
| CO-3            | -    | -    |
| CO-4            | -    | -    |
| CO-5            | -    | -    |

| SYLLABUS                                                                            |                                        |
|-------------------------------------------------------------------------------------|----------------------------------------|
| UNIT - I                                                                            | Periods: 9L+0T=9                       |
| ENTREPRENEURAL COMPETENCE                                                           |                                        |
| Entrepreneurship concept – Entrepreneurship as a Career – Entre                     | preneurial Personality -               |
| Characteristics of Successful, Entrepreneur – Knowledge and Sk                      | ills of Entrepreneur.                  |
|                                                                                     |                                        |
| UNIT - II<br>ENTREDRENELIDAL ENVIRONMENT                                            | Periods: 12L+01=12                     |
| ENTREPRENEURAL ENVIRONMENT<br>Pusings Environment – Pole of Femily and Society – En | transpaurshin Davalonment              |
| Training and Other Support Organizational Services Con                              | tral and State Covernment              |
| Industrial Daliaiaa and Dagulationa. International Dusingsa                         | trai and State Government              |
| industrial Policies and Regulations - International Busiliess.                      |                                        |
|                                                                                     | Deviadar OL + OT-0                     |
| RUSINESS PLAN PREPARATION                                                           | renous: 9L+01=9                        |
| Sources of Product for Business - Prefeasibility Study - Criteria                   | for Selection of Product -             |
| Ownership - Capital - Budgeting Project Profile Preparation - Ma                    | atching Entrepreneur with              |
| the Project - Feasibility Report Preparation and Evaluation Criter                  | ria.                                   |
|                                                                                     |                                        |
| UNIT - IV                                                                           | Periods: 9L+0T=9                       |
| LAUNCHING OF SMALL BUSINESS                                                         |                                        |
| Finance and Human Resource Mobilization Operations Planning                         | - Market and Channel                   |
| Selection - Growth Strategies - Product Launching – Incubation,                     | Venture capital, IT startups.          |
|                                                                                     |                                        |
| UNII - V<br>MANACEMENT OF SMALL BUSINESS                                            | Periods: 9L+01=9                       |
| Monitoring and Evaluation of Business - Preventing Sickness and                     | d Rehabilitation of Business           |
| Units- Effective Management of small Business.                                      | a Reliabilitation of Dusiness          |
|                                                                                     |                                        |
| TEXT BOOKS:                                                                         |                                        |
| 1. NVR Naidu& T. Krishna Rao ,"Management and Entrepret                             | neurship", I K International           |
| Publishing House; 0 edition (21 August 2008)                                        |                                        |
| 2. Vasant Desai "Dynamics of Entrepreneurial Development of                         | & <i>Management</i> ", Himalaya        |
| Publishing House.                                                                   |                                        |
| 3. Poornima M. Charantimath "Entrepreneurship Developmer                            | <i>it"</i> , Small Business, Pearson   |
| Education; Third edition (31 January 2018)                                          | & Company: 2011th adition              |
| T. S. S. Khanka, Entrepreneursnip Development, S Chand (1 December 2007)            | a company, 2011th edition              |
| (1 December 2007)                                                                   |                                        |
|                                                                                     |                                        |
| REFERENCE BOOKS:                                                                    |                                        |
| 1. David H. Holt , Entrepreneurship: New Venture Creation,                          | PEI., 1 <sup></sup> .Ed. 2016          |
| 2. Brigitte Berger, <i>The Culture of Entrepreneurship</i> , Ics Pr (               | 1 November 1991)                       |
| 3. K. Nagarajan , Project Management , New Age Internationa                         | ll Pvt Ltd , 1 <sup>st</sup> .Ed. 2005 |
|                                                                                     |                                        |
| WEB RESOURCES:                                                                      |                                        |
| 1. https://onlinecourses.swayam2.ac.in/ntr22_ed08/preview                           |                                        |
| 1. https://onlinecourses.swayam2.ac.in/ntr22_ed08/preview                           |                                        |

|           | SUPPLY CHAIN MANAGEMANT<br>(HUMANITIES ELECTIVE) |              |   |   |       |   |   |           |          |       |         |
|-----------|--------------------------------------------------|--------------|---|---|-------|---|---|-----------|----------|-------|---------|
| Code      | Category                                         | Periods/Week |   |   | Total |   |   | Sessional | End Exam | Total | Credits |
| Coue      | Category                                         | L            | Т | Р | L     | Т | Р | Marks     | Marks    | Marks | Cicuits |
| MEC312(D) | HS                                               | 3            | - | - | 48    | - | - | 40        | 60       | 100   | 3       |

### Prerequisite: Nil

## **Course Objectives:**

- 1. To provide an overview of role and importance of supply chain management in today's dynamic world.
- 2. To explore important aspects of supply chain management.

| r      |                                                                                     |  |  |  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Course | <b>Course Outcomes:</b> At the end of the course the student will be able to:       |  |  |  |  |  |  |  |  |  |
| CO-1   | Explain the concepts of SCM and also identify Supply Chain network to bring the     |  |  |  |  |  |  |  |  |  |
|        | product into the market.                                                            |  |  |  |  |  |  |  |  |  |
| CO-2   | Describe the various demand forecasting techniques and apply them in forecasting    |  |  |  |  |  |  |  |  |  |
|        | the demand of a particular product.                                                 |  |  |  |  |  |  |  |  |  |
| CO-3   | Develop supply chain planning to get the optimum results.                           |  |  |  |  |  |  |  |  |  |
| CO-4   | Explain location alternatives and apply these methods to find the optimal solution. |  |  |  |  |  |  |  |  |  |
| CO-5   | Develop supply chain in logistics.                                                  |  |  |  |  |  |  |  |  |  |
|        |                                                                                     |  |  |  |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 2   | -   | -   | -   | -   | -   | 2   | 1   | 2   | 2    | 2    | 2    |
| CO-2     | 2   | 2   | -   | -   | -   | 2   | 2   | 1   | 2   | 2    | 2    | 2    |
| CO-3     | 2   | 1   | 2   | -   | -   | -   | 2   | 1   | 2   | 2    | 2    | 2    |
| CO-4     | 2   | 1   | 2   | -   | -   | 2   | 1   | 1   | 2   | 2    | 2    | 2    |
| CO-5     | 2   | -   | 2   | -   | -   | -   | 1   | 1   | 2   | 2    | 2    | 2    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | -    | 2    |
| CO-2            | -    | 2    |
| CO-3            | -    | 2    |
| CO-4            | -    | 2    |
| CO-5            | -    | 2    |

|          | SYLLABUS                                                                                                                                                                      |                                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| UN       | UNIT - I                                                                                                                                                                      | Periods: 12L+0T=12                 |
| IN       | INTRODUCTION TO SUPPLY CHAIN MANAGEM                                                                                                                                          | IENT                               |
| S        | Supply Chain -Importance of Supply Chain manageme                                                                                                                             | nt (SCM), Overview, Objectives,    |
| N        | Nature & Scope of SCM, Managing the supply Chain                                                                                                                              | , Models of SCM, Evolution of      |
| S        | SCM. Supply chain networks, integrated supply chain                                                                                                                           | planning, importance of design,    |
| ro       | role of facility decisions, Distribution channels, d                                                                                                                          | esign of distribution channel,     |
| cl       | channel design, locational determinants.                                                                                                                                      |                                    |
| UN       | UNIT - II                                                                                                                                                                     | Periods: 9L+0T=9                   |
| DF       | DEMAND MANAGEMENT                                                                                                                                                             |                                    |
| D        | Demand management process, the role of forecasting a                                                                                                                          | nd production, basic approach to   |
| fc       | forecasting, overview of qualitative and quantitative n                                                                                                                       | nethods of forecasting, Nature of  |
| fc       | forecasting, relationship between customer service and o                                                                                                                      | lemand management.                 |
| UN       | UNIT - III                                                                                                                                                                    | Periods: 9L+0T=9                   |
| SU       | SUPPLY CHAIN PLANNING                                                                                                                                                         |                                    |
| A        | Aggregate planning in a supply chain, aggregate planning                                                                                                                      | ng strategies, planning supply and |
| de       | demand in a supply chain, planning and managing                                                                                                                               | inventories in a supply chain,     |
| p        | planning for optimal level of product availability.                                                                                                                           |                                    |
|          |                                                                                                                                                                               |                                    |
| UN       | UNIT - IV                                                                                                                                                                     | Periods: 9L+0T=9                   |
| L        | LOCATION ALTERNATIVES                                                                                                                                                         |                                    |
| Т        | The need for long range planning, major locational det                                                                                                                        | erminants, historical perspectives |
| 01       | on location problems, single facility versus multi                                                                                                                            | facility location, methods of      |
| ev       | evaluating location alternatives.                                                                                                                                             |                                    |
| UN       | UNIT - V                                                                                                                                                                      | Periods: 9L+0T=9                   |
| SU       | SUPPLY CHAIN - ORGANIZATION                                                                                                                                                   |                                    |
| N        | Need for supply chain organizational structure, importa                                                                                                                       | nce of supply chain organization,  |
| 01       | organizational development, organizational struc                                                                                                                              | ture in integrated logistics,      |
| O        | organizational choice and organizational scope, alliance                                                                                                                      | s and partnerships.                |
| C        | Case Study: The purpose of each case is to get you inv                                                                                                                        | volved in the course material, and |
| to       | to help you to understand the supply chain issues.                                                                                                                            |                                    |
| TF       | FEXT BOOKS:                                                                                                                                                                   |                                    |
| 1.       | I. Bowersox, Supply Chain & Logistics Mgmt. – Closs                                                                                                                           | & Cooper (TMGH) 2nd Ed.            |
| 2        | Chopra Supply Chain Management Strategy Pl                                                                                                                                    | uning & Operations Meindl          |
| 2.       | (Pearson) 1 <sup>st</sup> Ed                                                                                                                                                  | unning & Operations – Memor        |
| RF       | REFERENCE BOOKS                                                                                                                                                               |                                    |
| 1.       | N.Chadrasekaran, Supply Chain Management P                                                                                                                                    | Process, System & Practice –       |
|          | (Oxford) 1 <sup>st</sup> Ed                                                                                                                                                   |                                    |
| 2.       |                                                                                                                                                                               |                                    |
|          | 2.   Levi, Kaminsky et al Designing & Managing the Su                                                                                                                         | pply Chain – Concepts, Strategies  |
|          | Levi, Kaminsky et al Designing & Managing the Sup $\& Case studies - (TMGH) 3^{rd} Ed.$                                                                                       | pply Chain – Concepts, Strategies  |
|          | <i>&amp; Case studies</i> – (TMGH) 3 <sup>rd</sup> Ed.                                                                                                                        | pply Chain – Concepts, Strategies  |
| W        | 2. Levi, Kaminsky et al <i>Designing &amp; Managing the Sup</i><br>& <i>Case studies</i> – (TMGH) 3 <sup>rd</sup> Ed.<br>WEB RESOURCES:                                       | pply Chain – Concepts, Strategies  |
| <b>W</b> | <ul> <li>Levi, Kaminsky et al Designing &amp; Managing the Sup &amp;Case studies – (TMGH) 3<sup>rd</sup> Ed.</li> <li>WEB RESOURCES:</li> <li>http://www.cscmp.org</li> </ul> | pply Chain – Concepts, Strategies  |

## **DESIGN THINKING**

| Code    | Category | Peri | ods/W | Veek |    | Total |    | Sessional | End Exam | Total | Credits |
|---------|----------|------|-------|------|----|-------|----|-----------|----------|-------|---------|
|         | 0.       | L    | Т     | Р    | L  | Т     | Р  | Marks     | Marks    | Marks |         |
| MEC 313 | ES       | 2    | -     | 2    | 24 | -     | 24 | 40        | 60       | 100   | 3       |

**Prerequisite:** Computer Aided Geometrical Modelling

**Course Objectives:** To familiarize students with design thinking concepts and principles To ensure students can practice the methods, processes and tools of design thinking. To ensure students can apply the design thinking approach and have ability to model real world situations. To enable students to analyse primary and secondary research in the introduction to design thinking

| <b>Course Outcomes:</b> At the end of the course the student will be able to: |                                                                                   |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO-1                                                                          | Explain the design thinking principles & Identify an opportunity and scope of the |  |  |  |  |  |  |
|                                                                               | project and <b>prepare</b> the problem statement                                  |  |  |  |  |  |  |
| CO-2                                                                          | Apply the empathy tools to study the user and summarize finding related to        |  |  |  |  |  |  |
|                                                                               | problem for define phase.                                                         |  |  |  |  |  |  |
| CO-3                                                                          | Describe and define the problem specific to the user group and apply Ideation     |  |  |  |  |  |  |
|                                                                               | tools to generate Ideas to solve the problem                                      |  |  |  |  |  |  |
| <b>CO-4</b>                                                                   | <b>Develop</b> prototypes for test phase.                                         |  |  |  |  |  |  |
| CO-5                                                                          | Test the ideas and demonstrate Storytelling ability to present the Ideas.         |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 2   | 2   | 1   | 1   | -   | 2   | 2   | 2   | 3   | 3    | 3    | 3    |
| CO-2     | 3   | 2   | 1   | 1   | -   | 2   | 2   | 2   | 3   | 3    | 3    | 3    |
| CO-3     | 3   | 3   | 2   | 2   | -   | 2   | 2   | 2   | 3   | 3    | 3    | 3    |
| CO-4     | 3   | 3   | 2   | 2   | 3   | 2   | 2   | 2   | 3   | 3    | 3    | 3    |
| CO-5     | 3   | 3   | 2   | 2   | -   | 2   | 2   | 2   | 3   | 3    | 3    | 3    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 2    | -    |
| CO-2            | 2    | -    |
| CO-3            | 2    | -    |
| CO-4            | 2    | 2    |
| CO-5            | 2    | -    |

| <u>SYI</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LABUS                                                                                                                                                                                                                   |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Periods: 3L+3P=6                                                                                                                                                                                                        |  |  |  |  |  |  |
| Introduction To Design Thinking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Design Thinking, Need of design thinking,<br>of design thinking to other ways of thinking,<br>thinking, 5 characteristics of action plan. D<br>Tools: Problem statement. Design principles<br><b>Activities(Internal Assessment):</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 characteristics of design thinking, comparison<br>tools and resources, 5 actions phases of Design<br>bouble Diamond Technique for Design thinking.                                                                    |  |  |  |  |  |  |
| a. Case studies of Oeneral, engineering and the number of | reject and prepare the problem statement                                                                                                                                                                                |  |  |  |  |  |  |
| D. Identify an opportunity and scope of the p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oject and prepare the problem statement.                                                                                                                                                                                |  |  |  |  |  |  |
| UNIT - II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Periods: 5L+5P=10                                                                                                                                                                                                       |  |  |  |  |  |  |
| Empathize Phases: Design Thinking Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Interview for empathy, Ask 5x why, 5W+H cards, Empathy map, Persona/User profile, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | questions, Stakeholder map, Emotional response<br>Customer journey map.                                                                                                                                                 |  |  |  |  |  |  |
| <ul><li>Activities(Internal Assessment):</li><li>a. Study the user using empathy tools and summarize finding related to your problem for define phase.</li><li>b. Iterate the process at any stage if required</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Diviti - III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Periods: 5L+5P=10                                                                                                                                                                                                       |  |  |  |  |  |  |
| Define point of view & Ideate Phase: Desi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Periods: 5L+5P=10<br>gn Thinking Tools                                                                                                                                                                                  |  |  |  |  |  |  |
| Define point of view & Ideate Phase: Desi<br>Define point of view : "How might we"<br>cone, Critical items diagram.<br>Ideate: Brainstorming, 2x2 Matrix, Dot<br>Analogies & benchmarking as inspiration<br>Activities(Internal Assessment):<br>a. Apply the define tools to your problem: Fi<br>b. Apply the ideate tools to your problem: Go<br>c. Iterate the process at any stage if required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Periods: 5L+5P=10<br>gn Thinking Tools<br>question, Storytelling, Context mapping, Vision<br>voting, 6-3-5 Method, Special brainstorming,<br>nalize the problem statement<br>enerate lots of Ideas                      |  |  |  |  |  |  |
| Define point of view & Ideate Phase: Desi<br>Define point of view : "How might we"<br>cone, Critical items diagram.<br>Ideate: Brainstorming, 2x2 Matrix, Dot<br>Analogies & benchmarking as inspiration<br>Activities(Internal Assessment):<br>a. Apply the define tools to your problem: Fi<br>b. Apply the ideate tools to your problem: Go<br>c. Iterate the process at any stage if required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Periods: 5L+5P=10<br>gn Thinking Tools<br>question, Storytelling, Context mapping, Vision<br>voting, 6-3-5 Method, Special brainstorming,<br>nalize the problem statement<br>enerate lots of Ideas                      |  |  |  |  |  |  |
| Define point of view & Ideate Phase: Desi<br>Define point of view : "How might we"<br>cone, Critical items diagram.<br>Ideate: Brainstorming, 2x2 Matrix, Dot<br>Analogies & benchmarking as inspiration<br>Activities(Internal Assessment):<br>a. Apply the define tools to your problem: Fi<br>b. Apply the ideate tools to your problem: Go<br>c. Iterate the process at any stage if required<br>UNIT - IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Periods: 5L+5P=10<br>gn Thinking Tools<br>question, Storytelling, Context mapping, Vision<br>voting, 6-3-5 Method, Special brainstorming,<br>nalize the problem statement<br>enerate lots of Ideas<br>Periods: 6L+6P=12 |  |  |  |  |  |  |
| Define point of view & Ideate Phase: Desi<br>Define point of view : "How might we"<br>cone, Critical items diagram.<br>Ideate: Brainstorming, 2x2 Matrix, Dot<br>Analogies & benchmarking as inspiration<br>Activities(Internal Assessment):<br>a. Apply the define tools to your problem: Fi<br>b. Apply the ideate tools to your problem: Go<br>c. Iterate the process at any stage if required<br>UNIT - IV<br>Prototyping Phase: Methods and Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Periods: 5L+5P=10<br>gn Thinking Tools<br>question, Storytelling, Context mapping, Vision<br>voting, 6-3-5 Method, Special brainstorming,<br>nalize the problem statement<br>enerate lots of Ideas<br>Periods: 6L+6P=12 |  |  |  |  |  |  |

| UN    | IT - V Periods: 5L+5P=10                                                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test  | t Phase: Methods and Tools & Implementation                                                                                                                |
| Test  | t Phase: Methods and Tools Testing sheet, Feedback capture grid, Structured usability                                                                      |
| testi | ng, A/B Testing                                                                                                                                            |
| Imp   | elementation: Road map for implementation, Problem to growth & scale innovation                                                                            |
| funr  |                                                                                                                                                            |
| Act   | a Test the developed prototype by test phase tools and finalize the solution to the                                                                        |
|       | nrohlem                                                                                                                                                    |
| 1     | b. Iterate the process at any stage if required                                                                                                            |
|       | c. Prenare the complete project report                                                                                                                     |
|       | c. Trepare the complete project report.                                                                                                                    |
| TE    | XT BOOKS.                                                                                                                                                  |
| 1     | Daniel Ling "Complete Design Thinking Guide for Successful Professionals" Emerge                                                                           |
| 1.    | Creatives Group LLP, Print ISBN: 978-981-09-5564-9.                                                                                                        |
| 2.    | Tim Brown, Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation, HarperCollins e-books, 2009.                            |
| 3.    | Jeanne Liedtka, Andrew King, And Kevin Bennett, "Solving Problems with Design<br>Thinking", Columbia University Press Publishers, E-ISBN 978-0-231-53605-9 |
| 4.    | Michael Lewrick, Patrick Link, Larry Leifer, <i>The Design Thinking Toolbox</i> , John Wiley & Sons, 2020.                                                 |
|       |                                                                                                                                                            |
| REI   | FERENCE BOOKS:                                                                                                                                             |
| 1.    | Michael G. Luchs, Scott Swan, Abbie Griffin, "Design Thinking: New Product Development Essentials from the PDMA", ISBN-13: 978-1118971802                  |
| 2.    | Beverly Rudkin Ingle, "Design Thinking for Entrepreneurs and Small Businesses",<br>Apress, ISBN: 9781430261827                                             |
| 3.    | Jose Betancur "The Art of Design Thinking: Make More of Your Design Thinking<br>Workshops", ISBN: 9781522095378                                            |
| 4.    | Michael Lewrick, Patrick Link, Larry Leifer, The Design Thinking Playbook, John Wiley & Sons, 2018                                                         |
|       |                                                                                                                                                            |
| WE    | B RESOURCES:                                                                                                                                               |
| 1.    | https://dschool.stanford.edu/resources/design-thinking-bootleg                                                                                             |
| 2.    | https://www.ideo.com/post/design-thinking-for-educators                                                                                                    |
| 3.    | https://static1.squarespace.com/static/57c6b79629687fde090a0fdd/t/58890239db29d6cc<br>6c3338f7/1485374014340/METHODCARDS-v3-slim.pdf.                      |
| 4.    | https://www.intel.com/content/dam/www/program/education/us/en/documents/K12/desi<br>gn-and-discovery/student-guide-full-curriculum-session1-18.pdf         |

|        | DYNAMICS OF MACHINERY |              |   |   |       |    |   |           |          |       |         |
|--------|-----------------------|--------------|---|---|-------|----|---|-----------|----------|-------|---------|
| Code   | Category              | Periods/Week |   |   | Total |    |   | Sessional | End Exam | Total | Credits |
|        | 0,                    | L            | Т | Р | L     | Т  | P | Marks     | Marks    | Marks |         |
| MEC314 | PC                    | 2            | 1 | - | 32    | 16 | - | 40        | 60       | 100   | 3       |

Prerequisite: Engineering Mathematics, Engineering Mechanics, Kinematics of machinery

**Course Objectives:** To make the students understand the gyroscopic effect on vehicles, ships and aircrafts and design governors for specific application. The objective is also to enable students to perform dynamic and vibration analysis and solve balancing problems in practical applications.

| Course   | Course Outcomes: At the end of the course the student will be able to:                        |  |  |  |  |  |  |  |  |
|----------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO-1     | Apply the knowledge of Gyroscopic principle to airplane, ship, two wheelers and four          |  |  |  |  |  |  |  |  |
|          | wheelers and design Governors for a specific application                                      |  |  |  |  |  |  |  |  |
|          | wheelers and design dovernors for a specific application                                      |  |  |  |  |  |  |  |  |
| CO-2     | Perform static and dynamic analysis on slider crank mechanism and design flywheel for an      |  |  |  |  |  |  |  |  |
|          | IC engine.                                                                                    |  |  |  |  |  |  |  |  |
|          |                                                                                               |  |  |  |  |  |  |  |  |
| CO-3     | Solve rotating and reciprocating balancing problems in applications like shafts and           |  |  |  |  |  |  |  |  |
|          | Locomotives                                                                                   |  |  |  |  |  |  |  |  |
|          |                                                                                               |  |  |  |  |  |  |  |  |
| CO-4     | Distinguish different classes of vibrations and further analyze longitudinal vibrations of    |  |  |  |  |  |  |  |  |
| 001      | single degree of freedom of un-damped and damped conditions                                   |  |  |  |  |  |  |  |  |
|          | single degree of freedom of un-damped and damped conditions.                                  |  |  |  |  |  |  |  |  |
| <u> </u> |                                                                                               |  |  |  |  |  |  |  |  |
| CO-5     | Analyze free and forced transverse vibrations under different loading conditions and          |  |  |  |  |  |  |  |  |
|          | further study free torsional vibrations with single, two rotor, three rotor and geared system |  |  |  |  |  |  |  |  |
|          |                                                                                               |  |  |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 3   | 3   | 2   | -   | -   | -   | -   | -   | 2   | 2    | -    | 2    |
| CO-2     | 3   | 3   | 2   | -   | -   | -   | -   | -   | 2   | 2    | -    | 2    |
| CO-3     | 3   | 3   | 2   | -   | -   | -   | -   | -   | 2   | 2    | -    | 2    |
| CO-4     | 3   | 3   | 2   | -   | -   | -   | -   | -   | 2   | 2    | -    | 2    |
| CO-5     | 3   | 3   | 2   | -   | -   | -   | -   | -   | 2   | 2    | -    | 2    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 3    | -    |
| CO-2            | 3    | -    |
| CO-3            | 3    | -    |
| CO-4            | 3    | -    |
| CO-5            | 3    | -    |

| SY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LLABUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Periods: 6L+3T=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GYROSCOPE & GOVERNORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Gyroscope: Gyroscopic torque, Gyroscop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ic effect on Aeroplanes, Ships. Stability of four                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| wheeled and two wheeled vehicles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Governors: Types of governors, Watt, Por                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ter and Proell governors, spring loaded governors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - Hartnell. Sensitiveness of a governor, Hun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nting, Isochronism and Stability. Effort and Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| of Governor, Controlling force (Porter and I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hartnell governors).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Periods: 8L+4T=12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ENGINE FORCE ANALYSIS & TURNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NG MOMENT DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Static and dynamic force analysis: Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | proximate Analytical Method for Velocity and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Acceleration of the Piston, angular velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and angular acceleration of the connecting rod of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Slider crank Mechanism. D'Alembert's pri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inciple, Equivalent offset inertia force, Static and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dynamic analysis of slider crank mechanic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sm (Analytical/Graphical method), Engine force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| analysis, Dynamically equivalent system, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ertia of connecting rod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Turning moment diagrams: Turning me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oment diagrams for I-C engines, fluctuation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| energy, flywheels, and dimensions of flywh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eel rims.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Periods: 6L+3T=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>BALANCING OF ROTATING AND RE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CIPROCATING MASSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Balancing of rotating masses: Static and I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dynamic Balancing of rotating masses, Balancing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| of several masses in different planes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Balancing of reciprocating masses: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Primary and secondary unbalanced forces of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| reciprocating masses, Effects of partial ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lancing in locomotives- hammer blow, swaying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| couple variation of tractive force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| couple, variation of tractive force.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Periods: 6L+3T=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV<br>LONGITUDINAL VIBRATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Periods: 6L+3T=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV<br>LONGITUDINAL VIBRATIONS<br>Vibrations: Definitions- Types of vibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Periods: 6L+3T=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV<br>LONGITUDINAL VIBRATIONS<br>Vibrations: Definitions- Types of vibration<br>Longitudinal vibrations: Free longitudina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Periods: 6L+3T=9 As- Degrees of freedom. Al vibrations of systems having single degree of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV<br>LONGITUDINAL VIBRATIONS<br>Vibrations: Definitions- Types of vibration<br>Longitudinal vibrations: Free longitudina<br>freedom- Equilibrium method- Energy m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Periods: 6L+3T=9<br>as-Degrees of freedom.<br>al vibrations of systems having single degree of<br>nethod and Rayleigh's method, Inertia effect of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV<br>LONGITUDINAL VIBRATIONS<br>Vibrations: Definitions- Types of vibration<br>Longitudinal vibrations: Free longitudina<br>freedom- Equilibrium method- Energy m<br>spring. Damped vibrations, Logarithmic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Periods: 6L+3T=9<br>as- Degrees of freedom.<br>al vibrations of systems having single degree of<br>nethod and Rayleigh's method, Inertia effect of<br>decrement, Forced vibrations with damping-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV<br>LONGITUDINAL VIBRATIONS<br>Vibrations: Definitions- Types of vibration<br>Longitudinal vibrations: Free longitudina<br>freedom- Equilibrium method- Energy m<br>spring. Damped vibrations, Logarithmic<br>Magnification factor, Vibration isolation an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Periods: 6L+3T=9<br>as-Degrees of freedom.<br>al vibrations of systems having single degree of<br>tethod and Rayleigh's method, Inertia effect of<br>decrement, Forced vibrations with damping-<br>d Transmissibility.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV<br>LONGITUDINAL VIBRATIONS<br>Vibrations: Definitions- Types of vibration<br>Longitudinal vibrations: Free longitudina<br>freedom- Equilibrium method- Energy m<br>spring. Damped vibrations, Logarithmic<br>Magnification factor, Vibration isolation an<br>UNIT - V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Periods: 6L+3T=9<br>as-Degrees of freedom.<br>al vibrations of systems having single degree of<br>bethod and Rayleigh's method, Inertia effect of<br>decrement, Forced vibrations with damping-<br>d Transmissibility.<br>Periods: 6L+3T=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV<br>LONGITUDINAL VIBRATIONS<br>Vibrations: Definitions- Types of vibration<br>Longitudinal vibrations: Free longitudina<br>freedom- Equilibrium method- Energy m<br>spring. Damped vibrations, Logarithmic<br>Magnification factor, Vibration isolation an<br>UNIT - V<br>TRANSVERSE AND TORSIONAL VIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Periods: 6L+3T=9<br>as-Degrees of freedom.<br>al vibrations of systems having single degree of<br>bethod and Rayleigh's method, Inertia effect of<br>decrement, Forced vibrations with damping-<br>d Transmissibility.<br>Periods: 6L+3T=9<br>RATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV<br>LONGITUDINAL VIBRATIONS<br>Vibrations: Definitions- Types of vibration<br>Longitudinal vibrations: Free longitudina<br>freedom- Equilibrium method- Energy m<br>spring. Damped vibrations, Logarithmic<br>Magnification factor, Vibration isolation an<br>UNIT - V<br>TRANSVERSE AND TORSIONAL VIB<br>Transverse and Torsional vibrations: F                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Periods: 6L+3T=9         is- Degrees of freedom.         al vibrations of systems having single degree of         al vibrations of systems having single degree of         degree of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV<br>LONGITUDINAL VIBRATIONS<br>Vibrations: Definitions- Types of vibration<br>Longitudinal vibrations: Free longitudina<br>freedom- Equilibrium method- Energy m<br>spring. Damped vibrations, Logarithmic<br>Magnification factor, Vibration isolation an<br>UNIT - V<br>TRANSVERSE AND TORSIONAL VIB<br>Transverse and Torsional vibrations: F<br>concentrated load, uniformly distributed                                                                                                                                                                                                                                                                                                                                                                                                       | Periods: 6L+3T=9<br>as-Degrees of freedom.<br>al vibrations of systems having single degree of<br>tethod and Rayleigh's method, Inertia effect of<br>decrement, Forced vibrations with damping-<br>d Transmissibility.<br>Periods: 6L+3T=9<br>RATIONS<br>ree transverse vibrations of shafts due to single<br>load and carrying several concentrated loads-                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV<br>LONGITUDINAL VIBRATIONS<br>Vibrations: Definitions- Types of vibration<br>Longitudinal vibrations: Free longitudina<br>freedom- Equilibrium method- Energy m<br>spring. Damped vibrations, Logarithmic<br>Magnification factor, Vibration isolation an<br>UNIT - V<br>TRANSVERSE AND TORSIONAL VIB<br>Transverse and Torsional vibrations: F<br>concentrated load, uniformly distributed<br>Dunkerley's method and Energy method. W                                                                                                                                                                                                                                                                                                                                                            | Periods: 6L+3T=9<br>is- Degrees of freedom.<br>al vibrations of systems having single degree of<br>bethod and Rayleigh's method, Inertia effect of<br>decrement, Forced vibrations with damping-<br>d Transmissibility.<br>Periods: 6L+3T=9<br>RATIONS<br>ree transverse vibrations of shafts due to single<br>load and carrying several concentrated loads-<br>thirling of shafts. Free torsional vibrations (single,                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV<br>LONGITUDINAL VIBRATIONS<br>Vibrations: Definitions- Types of vibration<br>Longitudinal vibrations: Free longitudina<br>freedom- Equilibrium method- Energy m<br>spring. Damped vibrations, Logarithmic<br>Magnification factor, Vibration isolation an<br>UNIT - V<br>TRANSVERSE AND TORSIONAL VIB<br>Transverse and Torsional vibrations: F<br>concentrated load, uniformly distributed<br>Dunkerley's method and Energy method. W<br>two rotor and three rotor system), Torsional                                                                                                                                                                                                                                                                                                            | Periods: 6L+3T=9 As- Degrees of freedom. Al vibrations of systems having single degree of A tethod and Rayleigh's method, Inertia effect of A decrement, Forced vibrations with damping- A transmissibility. Periods: 6L+3T=9 RATIONS ree transverse vibrations of shafts due to single load and carrying several concentrated loads- Vhirling of shafts. Free torsional vibrations (single, ly equivalent shaft.                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV<br>LONGITUDINAL VIBRATIONS<br>Vibrations: Definitions- Types of vibration<br>Longitudinal vibrations: Free longitudina<br>freedom- Equilibrium method- Energy m<br>spring. Damped vibrations, Logarithmic<br>Magnification factor, Vibration isolation an<br>UNIT - V<br>TRANSVERSE AND TORSIONAL VIB<br>Transverse and Torsional vibrations: F<br>concentrated load, uniformly distributed<br>Dunkerley's method and Energy method. W<br>two rotor and three rotor system), Torsional<br>TEXT BOOKS:                                                                                                                                                                                                                                                                                             | Periods: 6L+3T=9<br>as-Degrees of freedom.<br>al vibrations of systems having single degree of<br>tethod and Rayleigh's method, Inertia effect of<br>decrement, Forced vibrations with damping-<br>d Transmissibility.<br>Periods: 6L+3T=9<br>RATIONS<br>ree transverse vibrations of shafts due to single<br>load and carrying several concentrated loads-<br>Thirling of shafts. Free torsional vibrations (single,<br>ly equivalent shaft.                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV         LONGITUDINAL VIBRATIONS         Vibrations: Definitions- Types of vibration         Longitudinal vibrations: Free longitudina         freedom- Equilibrium method- Energy m         spring. Damped vibrations, Logarithmic         Magnification factor, Vibration isolation an         UNIT - V         TRANSVERSE AND TORSIONAL VIB         Transverse and Torsional vibrations: F         concentrated load, uniformly distributed         Dunkerley's method and Energy method. W         two rotor and three rotor system), Torsional         TEXT BOOKS:         1.       S. S. Rattan, <i>Theory of Machines</i> , 5th ex                                                                                                                                                          | Periods: 6L+3T=9<br>as-Degrees of freedom.<br>al vibrations of systems having single degree of<br>bethod and Rayleigh's method, Inertia effect of<br>decrement, Forced vibrations with damping-<br>d Transmissibility.<br>Periods: 6L+3T=9<br>RATIONS<br>ree transverse vibrations of shafts due to single<br>load and carrying several concentrated loads-<br>thirling of shafts. Free torsional vibrations (single,<br>ly equivalent shaft.<br>dition, McGraw-Hill, New Delhi, 2019                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <td colsplex,="" td="" td<="" variation.<=""><td>Periods: 6L+3T=9 As- Degrees of freedom. Al vibrations of systems having single degree of A tethod and Rayleigh's method, Inertia effect of A decrement, Forced vibrations with damping- d Transmissibility. Periods: 6L+3T=9 RATIONS ree transverse vibrations of shafts due to single load and carrying several concentrated loads- hirling of shafts. Free torsional vibrations (single, ly equivalent shaft. dition, McGraw-Hill, New Delhi, 2019 achines, 14th edition, S Chand &amp; CO Ltd</td></td>                                                                                                                                                                                                                                                | <td>Periods: 6L+3T=9 As- Degrees of freedom. Al vibrations of systems having single degree of A tethod and Rayleigh's method, Inertia effect of A decrement, Forced vibrations with damping- d Transmissibility. Periods: 6L+3T=9 RATIONS ree transverse vibrations of shafts due to single load and carrying several concentrated loads- hirling of shafts. Free torsional vibrations (single, ly equivalent shaft. dition, McGraw-Hill, New Delhi, 2019 achines, 14th edition, S Chand &amp; CO Ltd</td>                                                                                                                                                                                                                     | Periods: 6L+3T=9 As- Degrees of freedom. Al vibrations of systems having single degree of A tethod and Rayleigh's method, Inertia effect of A decrement, Forced vibrations with damping- d Transmissibility. Periods: 6L+3T=9 RATIONS ree transverse vibrations of shafts due to single load and carrying several concentrated loads- hirling of shafts. Free torsional vibrations (single, ly equivalent shaft. dition, McGraw-Hill, New Delhi, 2019 achines, 14th edition, S Chand & CO Ltd                                    |
| <td colsplexity.<="" td=""><td>Periods: 6L+3T=9<br/>as-Degrees of freedom.<br/>al vibrations of systems having single degree of<br/>bethod and Rayleigh's method, Inertia effect of<br/>decrement, Forced vibrations with damping-<br/>d Transmissibility.<br/>Periods: 6L+3T=9<br/>RATIONS<br/>ree transverse vibrations of shafts due to single<br/>load and carrying several concentrated loads-<br/>Thirling of shafts. Free torsional vibrations (single,<br/>ly equivalent shaft.<br/>dition, McGraw-Hill, New Delhi, 2019<br/>achines, 14th edition, S Chand &amp; CO Ltd</td></td>                                                                                                                                                                                                                  | <td>Periods: 6L+3T=9<br/>as-Degrees of freedom.<br/>al vibrations of systems having single degree of<br/>bethod and Rayleigh's method, Inertia effect of<br/>decrement, Forced vibrations with damping-<br/>d Transmissibility.<br/>Periods: 6L+3T=9<br/>RATIONS<br/>ree transverse vibrations of shafts due to single<br/>load and carrying several concentrated loads-<br/>Thirling of shafts. Free torsional vibrations (single,<br/>ly equivalent shaft.<br/>dition, McGraw-Hill, New Delhi, 2019<br/>achines, 14th edition, S Chand &amp; CO Ltd</td>                                                                                                                                                                     | Periods: 6L+3T=9<br>as-Degrees of freedom.<br>al vibrations of systems having single degree of<br>bethod and Rayleigh's method, Inertia effect of<br>decrement, Forced vibrations with damping-<br>d Transmissibility.<br>Periods: 6L+3T=9<br>RATIONS<br>ree transverse vibrations of shafts due to single<br>load and carrying several concentrated loads-<br>Thirling of shafts. Free torsional vibrations (single,<br>ly equivalent shaft.<br>dition, McGraw-Hill, New Delhi, 2019<br>achines, 14th edition, S Chand & CO Ltd |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Periods: 6L+3T=9 As- Degrees of freedom. Al vibrations of systems having single degree of A tethod and Rayleigh's method, Inertia effect of A decrement, Forced vibrations with damping- d Transmissibility. Periods: 6L+3T=9 RATIONS ree transverse vibrations of shafts due to single load and carrying several concentrated loads- hirling of shafts. Free torsional vibrations (single, ly equivalent shaft. dition, McGraw-Hill, New Delhi, 2019 achines, 14th edition, S Chand & CO Ltd d edition, CBS publishers & distributors, 2005.                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - IV         LONGITUDINAL VIBRATIONS         Vibrations: Definitions- Types of vibration         Longitudinal vibrations: Free longitudina         freedom- Equilibrium method- Energy method         Spring. Damped vibrations, Logarithmic         Magnification factor, Vibration isolation an         UNIT - V         TRANSVERSE AND TORSIONAL VIB         Transverse and Torsional vibrations: F         concentrated load, uniformly distributed         Dunkerley's method and Energy method. W         two rotor and three rotor system), Torsional         TEXT BOOKS:         1.       S. S. Rattan, <i>Theory of Machines</i> , 5th ed         2.       R.S.Khurmi & J.K.Gupta, <i>Theory of Machines</i> , 3th ed         2.       P.L.Ballaney, <i>Theory of Machines</i> , 3th ed/state | Periods: 6L+3T=9<br>as-Degrees of freedom.<br>al vibrations of systems having single degree of<br>tethod and Rayleigh's method, Inertia effect of<br>decrement, Forced vibrations with damping-<br>d Transmissibility.<br>Periods: 6L+3T=9<br>RATIONS<br>ree transverse vibrations of shafts due to single<br>load and carrying several concentrated loads-<br>hirling of shafts. Free torsional vibrations (single,<br>ly equivalent shaft.<br>dition, McGraw-Hill, New Delhi, 2019<br><i>uchines</i> , 14th edition, S Chand & CO Ltd<br>d edition, CBS publishers & distributors, 2005.<br><i>mechanisms</i> , 25th ed., Khanna publishers, 2016.                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# III YEAR – I SEMESTER

| 1. | https://nptel.ac.in/courses/112/101/112101096/ |
|----|------------------------------------------------|
| 2. | http://nptel.ac.in/courses/112104114/          |

Γ

| APPLIED THERMAL ENGINEERING - II |          |              |   |       |    |    |           |          |       |         |   |
|----------------------------------|----------|--------------|---|-------|----|----|-----------|----------|-------|---------|---|
| Code                             | Category | Periods/Week |   | Total |    |    | Sessional | End Exam | Total | Credits |   |
|                                  |          | L            | 1 | P     | L  | 1  | r         | Marks    | Marks | Marks   |   |
| MEC315                           | PC       | 2            | 1 | -     | 32 | 16 | -         | 40       | 60    | 100     | 3 |

# Prerequisite: Engineering Mathematics, Engineering Mechanics, Basic Thermodynamics

**Course Objectives:** To impart knowledge on the basics of IC engines, gas turbines and compressors-their construction, working features and performance and further generate interest on combustion phenomena in IC engines.

| Course | <b>Course Outcomes:</b> At the end of the course the student will be able to:                                      |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CO-1   | Distinguish between different classes of IC Engines and further evaluate their performance.                        |  |  |  |  |  |
| CO-2   | Compare & analyze the air standard, fuel-air and actual cycles.                                                    |  |  |  |  |  |
| CO-3   | Describe the combustion phenomenon in S.I & C.I engines and further analyze the effect of engine parameters on it. |  |  |  |  |  |
| CO-4   | Distinguish various classes of compressors, evaluate their performance and interpret their characteristics.        |  |  |  |  |  |
| CO-5   | Categorize the gas turbine plants and analyze different methods for improving their performance.                   |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO-2     | 3   | 3   | -   | -   | -   | -   | 2   | -   | -   | -    | -    | -    |
| CO-3     | 3   | 3   | -   | -   | -   | -   | 2   | -   | -   | -    | -    | -    |
| CO-4     | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | _    | _    | -    |
| CO-5     | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 2    | -    |
| CO-2            | 2    | -    |
| CO-3            | 2    | -    |
| CO-4            | 2    | -    |
| CO-5            | 2    | -    |

CO- Course Outcome; PO- Program Outcome; PSO-Program Specific Outcome; Level- 1: Low, 2: Medium, 3: High

### Department of Mechanical Engineering, ANITS.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>SYLLABUS</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Periods: 6L+31=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Heat engines engine components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | & nomenclature working principle of engines, four                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| stroke & two stroke engines S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k C L angines classification carburation simple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| subre & two subre engines, 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a classification fuel injection nump. Testing &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| performance frictional power Willar                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a's line method. Morse test retardation test indicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| power brake power rope brake an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d hydraulic dynamometer indicated & brake mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| offective pressures angine officience                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vias angina performance characteristics heat balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iles, engine performance characteristics, near balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| sneet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| UNIT – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Periods: 6L+3T=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CYCLES AND ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Air standard cycles- Otto, Diesel & I                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dual cycles-Thermal efficiency, work output and mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| effective pressure, comparison of cy                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cles-fuel-air cycles and their significance-composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| of cylinder gases-variable specific he                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eats-dissociation, comparison of air standard and fuel-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| air cycles, actual cycles and their an                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | alysis, time loss factor, heat loss factor, exhaust blow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| down, losses due to gas exchange pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ocess.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| UNIT – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Periods: 6L+3T=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>COMBUSTION IN IC ENGINES</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Combustion in SI Engineer SI on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Compusition in SI Engines: S.I. eng                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gines- Normal combustion and abnormal combustion-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Importance of flame speed and effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Importance of flame speed and effect pre-ignition and knock, knock limit                                                                                                                                                                                                                                                                                                                                                                                                                                         | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-<br>ted parameters, effect of engine variables on knock,                                                                                                                                                                                                                                                                                                                                                                                                         |
| Importance of flame speed and effect<br>pre-ignition and knock, knock limit<br>Combustion chamber requirements a                                                                                                                                                                                                                                                                                                                                                                                                 | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-<br>ted parameters, effect of engine variables on knock,<br>nd Types of combustion chambers.                                                                                                                                                                                                                                                                                                                                                                     |
| Combustion in ST Engines: S.I. enginestration and speed and effective pre-ignition and knock, knock limit Combustion chamber requirements a Combustion in CI Engines: Stage                                                                                                                                                                                                                                                                                                                                      | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-<br>ted parameters, effect of engine variables on knock,<br>nd Types of combustion chambers.<br>es of combustion- Delay period and its importance-                                                                                                                                                                                                                                                                                                               |
| <b>Combustion in ST Engines:</b> S.I. enginestion and speed and effect pre-ignition and knock, knock limit Combustion chamber requirements a <b>Combustion in CI Engines:</b> Stage effect of engine variables, diesel k                                                                                                                                                                                                                                                                                         | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-<br>ted parameters, effect of engine variables on knock,<br>nd Types of combustion chambers.<br>es of combustion- Delay period and its importance-<br>cnock-suction, compression and combustion induced                                                                                                                                                                                                                                                          |
| Combustion in ST Engines: S.I. enginestration and knock, knock limit<br>Combustion chamber requirements a<br><b>Combustion in CI Engines:</b> Stage<br>effect of engine variables, diesel k<br>turbulence, Direct & Indirect injection                                                                                                                                                                                                                                                                           | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-<br>ted parameters, effect of engine variables on knock,<br>nd Types of combustion chambers.<br>es of combustion- Delay period and its importance-<br>cnock-suction, compression and combustion induced<br>on combustion chambers.Fuel requirements, fuel rating                                                                                                                                                                                                 |
| <b>Combustion in ST Engines:</b> S.I. enginestion and knock, knock limit<br>Combustion chamber requirements a<br><b>Combustion in CI Engines:</b> Stage<br>effect of engine variables, diesel k<br>turbulence, Direct & Indirect injection<br>and anti-knock additives.                                                                                                                                                                                                                                          | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-<br>ted parameters, effect of engine variables on knock,<br>nd Types of combustion chambers.<br>es of combustion- Delay period and its importance-<br>cnock-suction, compression and combustion induced<br>on combustion chambers.Fuel requirements, fuel rating                                                                                                                                                                                                 |
| <b>Combustion in ST Engines:</b> S.I. enginestion and knock, knock limit<br>Combustion chamber requirements a<br><b>Combustion in CI Engines:</b> Stage<br>effect of engine variables, diesel k<br>turbulence, Direct & Indirect injection<br>and anti-knock additives.                                                                                                                                                                                                                                          | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-<br>ted parameters, effect of engine variables on knock,<br>nd Types of combustion chambers.<br>es of combustion- Delay period and its importance-<br>cnock-suction, compression and combustion induced<br>on combustion chambers.Fuel requirements, fuel rating                                                                                                                                                                                                 |
| <b>Combustion in ST Engines:</b> S.I. enginestion and knock, knock limit<br>Combustion chamber requirements a<br><b>Combustion in CI Engines:</b> Stage<br>effect of engine variables, diesel k<br>turbulence, Direct & Indirect injection<br>and anti-knock additives.                                                                                                                                                                                                                                          | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-<br>ted parameters, effect of engine variables on knock,<br>nd Types of combustion chambers.<br>es of combustion- Delay period and its importance-<br>cnock-suction, compression and combustion induced<br>on combustion chambers.Fuel requirements, fuel rating<br><b>Periods: 8L+4T=12</b>                                                                                                                                                                     |
| Combustion in ST Engines: S.I. engines: S.I. engines: Importance of flame speed and effect pre-ignition and knock, knock limit Combustion chamber requirements a         Combustion in CI Engines: Stage effect of engine variables, diesel k turbulence, Direct & Indirect injection and anti-knock additives.         UNIT – IV         AIR COMPRESSORS         Basin pageting         Compageting                                                                                                             | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-<br>ted parameters, effect of engine variables on knock,<br>nd Types of combustion chambers.<br>es of combustion- Delay period and its importance-<br>cnock-suction, compression and combustion induced<br>on combustion chambers.Fuel requirements, fuel rating<br>Periods: 8L+4T=12                                                                                                                                                                            |
| Combustion in ST Engines: S.I. enginestriction and knock, knock limit         Combustion and knock, knock limit         Combustion chamber requirements a         Combustion in CI Engines: Stage         effect of engine variables, diesel k         turbulence, Direct & Indirect injection         and anti-knock additives.         UNIT – IV         AIR COMPRESSORS         Reciprocating Compressors: Classical effect of clean                                                                          | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-<br>ted parameters, effect of engine variables on knock,<br>nd Types of combustion chambers.<br>es of combustion- Delay period and its importance-<br>cnock-suction, compression and combustion induced<br>on combustion chambers.Fuel requirements, fuel rating<br>Periods: 8L+4T=12<br>ssifications, indicated diagram, equation for work,<br>rance in compressors free air delivered volumetric                                                               |
| Combustion in ST Engines: S.I. engines: S.I. engines: Importance of flame speed and effect pre-ignition and knock, knock limit Combustion chamber requirements a         Combustion in CI Engines: Stage effect of engine variables, diesel k turbulence, Direct & Indirect injection and anti-knock additives.         UNIT – IV         AIR COMPRESSORS         Reciprocating Compressors: Classisothermal efficiency-effect of clease efficiency, actual p-v diagram. sir                                     | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-<br>ted parameters, effect of engine variables on knock,<br>nd Types of combustion chambers.<br>es of combustion- Delay period and its importance-<br>cnock-suction, compression and combustion induced<br>on combustion chambers.Fuel requirements, fuel rating<br>Periods: 8L+4T=12<br>ssifications, indicated diagram, equation for work,<br>rance in compressors, free air delivered, volumetric<br>negle stage and multi stage compressors, effect of inter |
| Combustion in ST Engines: S.I. engines: S.I. engines: S.I. engines: Importance of flame speed and effect pre-ignition and knock, knock limitCombustion in CI Engines: Stageeffect of engine variables, diesel kturbulence, Direct & Indirect injectionand anti-knock additives.UNIT – IVAIR COMPRESSORSReciprocating Compressors: Classisothermal efficiency-effect of cleaefficiency, actual p-v diagram, sircooling in multi stage compressors.                                                                | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-<br>ted parameters, effect of engine variables on knock,<br>nd Types of combustion chambers.<br>es of combustion- Delay period and its importance-<br>cnock-suction, compression and combustion induced<br>on combustion chambers.Fuel requirements, fuel rating<br>Periods: 8L+4T=12<br>ssifications, indicated diagram, equation for work,<br>rance in compressors, free air delivered, volumetric<br>ngle stage and multi stage compressors, effect of inter  |
| Combustion in ST Engines: S.I. engines: S.I. engines: Importance of flame speed and effect pre-ignition and knock, knock limit Combustion chamber requirements a         Combustion in CI Engines: Stage effect of engine variables, diesel k turbulence, Direct & Indirect injection and anti-knock additives.         UNIT – IV         AIR COMPRESSORS         Reciprocating Compressors: Classisothermal efficiency-effect of clease efficiency, actual p-v diagram, sir cooling in multi stage compressors. | gines- Normal combustion and abnormal combustion-<br>ct of engine variables-types of abnormal combustion-<br>ted parameters, effect of engine variables on knock,<br>nd Types of combustion chambers.<br>es of combustion- Delay period and its importance-<br>cnock-suction, compression and combustion induced<br>on combustion chambers.Fuel requirements, fuel rating<br>Periods: 8L+4T=12<br>ssifications, indicated diagram, equation for work,<br>rance in compressors, free air delivered, volumetric<br>ngle stage and multi stage compressors, effect of inter  |

**Rotary Compressors:** classification, steady flow compressors, static and stagnation quantities, centrifugal compressor-construction, working principle, velocity diagrams, Euler's work, Isentropic efficiency, slip factor & pressure co-efficient, compressor characteristics, Axial flow compressors–velocity diagrams – degree of reaction, polytropic efficiency, Surging & chocking.

| UNIT – V Periods: 6L+3T=9                                                                                                     |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| GAS TURBINES & JET PROPULSION                                                                                                 |  |  |  |  |  |
| Gas Turbines: Simple gas turbine plant-closed and open cycle gas turbines, Brayton cycle,                                     |  |  |  |  |  |
| Efficiency, work ratio and optimum pressure ratio for simple gas turbine cycle, actual cycle,                                 |  |  |  |  |  |
| methods for performance improvement- regeneration, Inter-cooling and reheating.                                               |  |  |  |  |  |
| Jet propulsion: Turbo-jet engines, thrust, thrust power, efficiencies, Turbo-prop engines,                                    |  |  |  |  |  |
| Ramjet and pulse jet engines, Rocket engines.                                                                                 |  |  |  |  |  |
|                                                                                                                               |  |  |  |  |  |
| TEXT BOOKS:                                                                                                                   |  |  |  |  |  |
| <ol> <li>V. Ganesan, Internal Combustion Engines 4<sup>th</sup> edition, Tata McGraw Hill Education (P) Ltd, 2012.</li> </ol> |  |  |  |  |  |
| 2. R. K. Rajput, <i>Thermal Engineering</i> 10th edition, Laxmi publication (P) Ltd, 2018.                                    |  |  |  |  |  |
|                                                                                                                               |  |  |  |  |  |
| REFERENCE BOOKS:                                                                                                              |  |  |  |  |  |
| 1. R. Yadav, <i>Applied Thermodynamics</i> 6 <sup>th</sup> revised edition, Central Publishing House, Allahabad, 2011.        |  |  |  |  |  |
| 2. M.L. Mathur and R.P. Sharma, <i>Internal Combustion Engines</i> Danpat Rai , 2016.                                         |  |  |  |  |  |
| 3. V. Ganesan, <i>Gas Turbines</i> 3 <sup>rd</sup> edition, Tata McGraw Hill Education (P) Ltd, 2010.                         |  |  |  |  |  |
|                                                                                                                               |  |  |  |  |  |
| WEB RESOURCES:                                                                                                                |  |  |  |  |  |
| 1. <u>https://nptel.ac.in/courses/112103262</u>                                                                               |  |  |  |  |  |
| 1                                                                                                                             |  |  |  |  |  |

Г

| <b>DESIGN OF MACHINE ELEMENTS – I</b> |          |              |   |   |       |    |   |           |          |       |         |
|---------------------------------------|----------|--------------|---|---|-------|----|---|-----------|----------|-------|---------|
| Code                                  | Category | Periods/Week |   |   | Total |    |   | Sessional | End Exam | Total | Credits |
|                                       |          | L            | 1 | P | L     | T  | P | Marks     | Marks    | Marks |         |
| MEC 316                               | PC       | 2            | 1 | - | 32    | 16 | - | 40        | 60       | 100   | 3       |

Prerequisite: Engineering mathematics, Engineering Mechanics, Mechanics of Solids

**Course Objectives:** This course enables the student to design a competitive product by following all the design considerations, materials and mechanical properties. The knowledge gained through this course also enables the student to design components subjected to static and fatigue loads useful for automotive aerospace industries.

| Course      | <b>Dutcomes:</b> At the end of the course the student will be able to :          |
|-------------|----------------------------------------------------------------------------------|
| CO-1        | Formulate a design problem based on design & manufacturing considerations and    |
|             | identify appropriate material of construction                                    |
|             |                                                                                  |
| CO-2        | Analyze the various criteria of failure and design a component based on these    |
|             | criteria against static and fluctuating loads                                    |
|             |                                                                                  |
| CO-3        | Design threaded, Riveted and welded joints, subjected to Eccentric & fluctuating |
|             | loads.                                                                           |
|             |                                                                                  |
| <b>CO-4</b> | <b>Design</b> shafts, keys and couplings subjected to static and dynamic loads.  |
|             |                                                                                  |
| CO-5        | <b>Design</b> of springs subjected to static and fatigue loads.                  |
|             |                                                                                  |

| PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO   |     |     |     |     |     |     |     |     |     |      |      |      |
| CO-1 | 3   | 2   | 1   | -   | -   | -   | -   | -   | 2   | 2    | -    | 2    |
| CO-2 | 3   | 3   | 2   | -   | -   | -   | -   | -   | 2   | 2    | -    | 2    |
| CO-3 | 3   | 3   | 3   | -   | -   | -   | -   | -   | 2   | 2    | -    | 2    |
| CO-4 | 3   | 3   | 3   | -   | -   | -   | -   | -   | 2   | 2    | -    | 2    |
| CO-5 | 3   | 3   | 3   | -   | _   | -   | _   | -   | 2   | 2    | -    | 2    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 2    | -    |
| CO-2            | 3    | -    |
| CO-3            | 3    | -    |
| CO-4            | 3    | -    |
| CO-5            | 3    | -    |

| <u>SYLI</u>                                      | ABUS                                              |
|--------------------------------------------------|---------------------------------------------------|
| UNIT - I                                         | Periods: 6L+3T=9                                  |
| INTRODUCTION TO MECHANICAL EN                    | GINEERING DESIGN                                  |
| Traditional design methods, design process,      | Problem formulation, Design considerations,       |
| manufacturing considerations, engineering r      | naterials, Mechanical properties, BIS system      |
| designation of steels.                           |                                                   |
|                                                  |                                                   |
|                                                  |                                                   |
| UNIT - II<br>DESIGN A CAINST STATIC AND ELLICT   | Periods: 6L+31=9                                  |
| Design against static loads: Modes of failure    | Eastery of safety Axial banding and tersional     |
| Strassas Cottar joint Knuckla joint Static fail  | , Factory of safety, Axial, bending and torsional |
| Suesses, Cotter joint, Knuckle joint, Static fan | ure meories.                                      |
| <b>Design against fluctuating load:</b> Stress   | concentration. Methods of reducing stress         |
| concentration, Fatigue, Endurance limit, S-N     | N Curve for steels, Soderberg, Goodman and        |
| modified Goodman diagrams, cumulative dan        | hage in fatigue, Fatigue design under combined    |
| stresses.                                        |                                                   |
|                                                  |                                                   |
| UNIT - III                                       | Periods: 8L+4T=12                                 |
| DESIGN OF THREADED, RIVETED ANI                  | ) WELDED JOINTS                                   |
| <b>Threaded joints:</b> Forms of threads. ISO me | tric screw threads, eccentrically loaded bolted   |
| ioints. Torque requirement for bolt tightenir    | g Fluctuating loads on bolted joints bolt of      |
| uniform strength Power screws Force analysi      | s on screw jack Collar friction                   |
|                                                  | s on serew juck, contai motion.                   |
| <b>Divoted Loints:</b> Materials of Divots Types | of Riveted joints strength and efficiency of      |
| riveted joints. Matchais of Kivets, Types        | of Rivered Johns, strength and efficiency of      |
| Inveted joints. Design of Lap and Butt joints.   |                                                   |
| Willed States Transa of small is into star       |                                                   |
| weided joints: Types of weid joints, stren       | ngth of butt and fillet joints, axially loaded    |
| unsymmetrical welded joints, eccentrically loa   | aded welded joints, and welded joints subjected   |
| to bending moment, welding inspection.           |                                                   |
|                                                  |                                                   |
| UNIT - IV                                        | Periods: 6L+3T=9                                  |
| DESIGN OF SHAFTS, KEYS AND COUP                  | LINGS                                             |
| Shafts & keys: Types of shafts, selection of     | of material, shafts design on strength basis &    |
| torsional rigidity basis, Design of hollow shaft | s, ASME codes for shaft design. Types of keys,    |
| Design of square and flat key, Kennedy key, S    | plines.                                           |
|                                                  |                                                   |
| Couplings:-                                      |                                                   |
| Types of couplings, selection of material, Rigi  | d flange couplings. Flexible couplings.           |
| universal counting                               | 8 <u>F</u> 8-,                                    |
| Case Studies will be given in design of she      | ofts and couplings for transmitting the power     |
| between two machine clowerts                     | gis and couplings for iransmitting the power      |
| between two machine elements.                    |                                                   |
|                                                  |                                                   |
|                                                  |                                                   |

| UNIT - V          | Periods: 6L+3T=9 |
|-------------------|------------------|
| Design of Springs |                  |

Classification of springs, spring materials, style of spring end, Design of helical Compression springs, helical extension springs, springs design under fatigue loads, torsion springs. Leaf springs, Equalized stress in spring leaves. Surge in springs, Nipping and shot peening.

Case Studies will be given in design of springs subjected to static and fatigue loads.

| TEX | <b>XT BOOKS:</b>                                                             |
|-----|------------------------------------------------------------------------------|
| 1.  | V.B.Bhandari, Design of Machine Elements, TMH Publishing Co. Ltd., New Delhi |
| 2.  | Jain, Machine Design, Khanna Publications                                    |
| 3.  | DesignPandya and Shaw, Machine Design, Charotar publication                  |
| 4.  | R S Khurmi and J K Gupta, Machine Design, Eurasia Publishing house Pvt Ltd   |

| <b>REFERENCE BOOKS</b> : |                                                                                     |  |  |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1.                       | Shigley, Mechanical Engineering design, Eighth Edition, McGraw Hill Company         |  |  |  |  |  |  |
| 2.                       | R.L.Norton, Machine design, an integrated approach , 2nd edition, Pearson Education |  |  |  |  |  |  |
| 3.                       | kalaikthir Achchagam, Design data book, PSG College of technology, Coimbatore,      |  |  |  |  |  |  |
|                          | 2011. Note: Design data book is allowed in examinations.                            |  |  |  |  |  |  |
|                          |                                                                                     |  |  |  |  |  |  |
| WE                       | B RESOURCES:                                                                        |  |  |  |  |  |  |
| 1.                       | https://www.nptelvideos.com/course.php?id=791                                       |  |  |  |  |  |  |
| 2.                       | https://www.digimat.in/nptel/courses/video/112105124/L01.html                       |  |  |  |  |  |  |
| -                        |                                                                                     |  |  |  |  |  |  |

3 https://www.machinedesignonline.com/

| KINEMATICS AN | ND DYNAMICS | OF MACHINERY LAB |
|---------------|-------------|------------------|
|---------------|-------------|------------------|

| Code    | Category | Peri | ods/W | Veek |   | Total |    | Sessional | End Exam | Total | Credits |
|---------|----------|------|-------|------|---|-------|----|-----------|----------|-------|---------|
| Code    | Category | L    | Т     | Р    | L | Т     | Р  | Marks     | Marks    | Marks | Cieuns  |
| MEC 317 | PC       | -    | -     | 3    | - | -     | 48 | 50        | 50       | 100   | 1.5     |

**Prerequisite:** Engineering Mechanics, Kinematics of Machinery

**Course Objectives:** The laboratory serves the purpose of training students to understand the kinematic and dynamic characteristics of machines and their components.

| <b>Course Outcomes:</b> At the end of the course the student will be able to:        |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Plot displacement, velocity and acceleration of a slider crank mechanism and         |  |  |  |  |  |  |  |  |
| determine the coriolis component of acceleration.                                    |  |  |  |  |  |  |  |  |
| Analyze the cam follower behaviour for various cam positions                         |  |  |  |  |  |  |  |  |
| Evaluate performance characteristics of various centrifugal governors                |  |  |  |  |  |  |  |  |
| Observe the gyroscopic effect and calculate the gyroscopic couple                    |  |  |  |  |  |  |  |  |
| Balance rotating masses statically and dynamically for the given system              |  |  |  |  |  |  |  |  |
| Determine the frequency of vibrations and calculate the whirling speed of a rotating |  |  |  |  |  |  |  |  |
| shaft                                                                                |  |  |  |  |  |  |  |  |
|                                                                                      |  |  |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 3   | 2   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-2     | 3   | 2   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-3     | 3   | 2   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-4     | 3   | 2   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-5     | 3   | 2   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-6     | 3   | 2   | -   | 2   | -   | -   | -   | 3   | -   | 3    |      | 2    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 2    | 1    |
| CO-2            | 2    | 1    |
| CO-3            | 2    | 1    |
| CO-4            | 2    | 1    |
| CO-5            | 2    | 1    |
| CO-6            | 2    | 1    |

| SL No                                                                                  |                                                                                                                                         | COURSE  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|
| <b>51, INU</b>                                                                         | NAME OF THE EXPERIMENT                                                                                                                  | OUTCOME |  |  |  |  |  |
| 1                                                                                      | To plot slider displacement, velocity and acceleration for a slider crank mechanism                                                     | CO 1    |  |  |  |  |  |
| 2                                                                                      | To study the coriolis component of acceleration at various speeds                                                                       | CO 1    |  |  |  |  |  |
| 3                                                                                      | To study the cam follower behaviour at different cam positions                                                                          | CO 2    |  |  |  |  |  |
| 4                                                                                      | To draw performance characteristic curves and find the stability and<br>sensitivity of Porter and Proell Governor                       | CO 3    |  |  |  |  |  |
| 5                                                                                      | To draw performance characteristic curves and find the stability and sensitivity of Hartnell Governor                                   | CO 3    |  |  |  |  |  |
| 6                                                                                      | To study the Gyroscopic effect and determine the gyroscopic couple<br>on a motorized Gyroscope                                          | CO 4    |  |  |  |  |  |
| 7                                                                                      | To perform static balancing experiment on the static balancing machine                                                                  | CO 5    |  |  |  |  |  |
| 8                                                                                      | To perform Dynamic balancing experiment on the Dynamic balancing machine                                                                | CO 5    |  |  |  |  |  |
| 9                                                                                      | To determine the moment of Inertia of a connecting rod by the<br>compound pendulum method and to study the dynamic equivalent<br>system | CO 5    |  |  |  |  |  |
| 10                                                                                     | To find the natural frequency of longitudinal and transverse vibrations                                                                 | CO 6    |  |  |  |  |  |
| 11                                                                                     | To determine the critical or whirling speed of the rotating shaft                                                                       | CO 6    |  |  |  |  |  |
|                                                                                        |                                                                                                                                         |         |  |  |  |  |  |
| REFERENCE BOOKS:                                                                       |                                                                                                                                         |         |  |  |  |  |  |
| 1. S. S. Rattan, Theory of Machines, 5th edition, McGraw-Hill Publications, New Delhi, |                                                                                                                                         |         |  |  |  |  |  |

Г

| THERMAL ENGINEERING LAB |          |       |            |           |   |       |    |                    |          |                |         |
|-------------------------|----------|-------|------------|-----------|---|-------|----|--------------------|----------|----------------|---------|
| Code                    | Category | Perio | ods/W<br>T | Veek<br>P | L | Total |    | Sessional<br>Marks | End Exam | Total<br>Marks | Credits |
| MEC 318                 | PC       | -     | -          | 3         | - | -     | 48 | 50                 | 50       | 100            | 1.5     |

Prerequisite: Knowledge of Engineering Chemistry and Applied Thermal Engineering-I & II.

**Course Objectives:** The laboratory serves the purpose of imparting training on the basics of internal combustion engines, Air compressor, Refrigerator & Air conditioner, their construction, operation and performance assessment.

| Course      | Course Outcomes: At the end of the course the student will be able to:            |  |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO-1        | Experiment with I.C Engines to evaluate their performance                         |  |  |  |  |  |  |
| CO-2        | Experiment with two stage Air compressor and determine its efficiencies.          |  |  |  |  |  |  |
| CO-3        | Estimate actual & theoretical COP's of VCR System and Air conditioning System     |  |  |  |  |  |  |
|             | by experimentation.                                                               |  |  |  |  |  |  |
| <b>CO-4</b> | Estimate the Dryness Fraction of wet steam by using Separating and Throttling     |  |  |  |  |  |  |
|             | Calorimeter.                                                                      |  |  |  |  |  |  |
| CO-5        | Determine the properties of Fuels like Flash, Fire points & Calorific value.      |  |  |  |  |  |  |
| CO-6        | Calibrate a Pressure Gauge and Assess the Variation of Viscosity of a Lubricating |  |  |  |  |  |  |
|             | oil with temperature by Experimentation.                                          |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 3   | 3   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-2     | 3   | 3   | -   | 2   | -   | -   | -   | 3   | -   | 3    | _    | 2    |
| CO-3     | 3   | 3   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-4     | 3   | 3   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-5     | 3   | 3   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-6     | 3   | 3   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |

| Course Outcomes | PSO1     | PSO2 |
|-----------------|----------|------|
|                 | 1.001    | 1202 |
|                 |          |      |
| CO-1            | 2        | 1    |
|                 |          |      |
| CO-2            | 2        | 1    |
|                 | _        | _    |
| CO-3            | 2        | 1    |
|                 |          |      |
| CO-4            | 2        | 1    |
|                 | _        | -    |
| CO-5            | 2        | 1    |
| 000             | 1        | 1    |
| CO-6            | 2        | 1    |
| 23 0            | <i>L</i> | 1    |

| SYLLABUS |                                                                                                 |                                         |  |  |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|--|
| LIS      | Γ OF EXPERIMENTS (any ten)                                                                      | Periods: 3 practicals/week              |  |  |  |  |  |  |  |
| 1        | . Load test on a single cylinder Diesel Engine t                                                | o evaluate its <b>Performance</b> Morse |  |  |  |  |  |  |  |
|          | test on Multi-cylinder petrol engine to determine Frictional power.                             |                                         |  |  |  |  |  |  |  |
| 2        | 2. Prepare a <b>Heat balance sheet</b> of a Diesel Engine by experimentation.                   |                                         |  |  |  |  |  |  |  |
| 3        | . Retardation test on a slow speed Diesel engine                                                | e to obtain Frictional power            |  |  |  |  |  |  |  |
| 4        | . Determination of Various Efficiencies of a gi                                                 | ven 2-stage air compressor.             |  |  |  |  |  |  |  |
| 5        | . Determination of theoretical, actual and relative refrigeration system.                       | ve <b>COP's</b> of a vapour compression |  |  |  |  |  |  |  |
| 6        | 6. Measurement of <b>Dryness fraction</b> of steam using separating and throttling calorimeter. |                                         |  |  |  |  |  |  |  |
| 7        | 7. Determination of <b>Calorific value</b> of Gaseous fuel by using Junker's Gas Calorimeter.   |                                         |  |  |  |  |  |  |  |
| 8        | . Observation and marking of Valve timings                                                      | of a four stroke Engine and Port        |  |  |  |  |  |  |  |
|          | timings of a two stroke Engine and further dra                                                  | w VTD & PTD respectively.               |  |  |  |  |  |  |  |
| 9        | . Determination of Absolute & Kinematic vis                                                     | cosities of a given lubricating oil     |  |  |  |  |  |  |  |
|          | sample using Redwood Viscometer and study                                                       | their variation with temperature.       |  |  |  |  |  |  |  |
| 1        | 0. Determination of Flash & Fire points of Fue                                                  | l oils.                                 |  |  |  |  |  |  |  |
| 1        | 1. Calibration of a Pressure Gauge by using Pre-                                                | essure gauge tester                     |  |  |  |  |  |  |  |
| 1        | 2. Determination of theoretical, actual and relat system.                                       | ive <b>COP's</b> of an Air conditioning |  |  |  |  |  |  |  |
| 1        | 3. Demonstration Experiment on a Computer                                                       | rized Variable compression ratio        |  |  |  |  |  |  |  |
|          | Diesel Engine to obtain Crank angle Vs Pres                                                     | sure diagram.                           |  |  |  |  |  |  |  |
|          |                                                                                                 |                                         |  |  |  |  |  |  |  |
|          |                                                                                                 |                                         |  |  |  |  |  |  |  |
| REF      | TERENCE BOOKS:                                                                                  |                                         |  |  |  |  |  |  |  |
| 1.       | R.K.Rajput, <i>Thermal Engineering</i> 10 <sup>th</sup> edition,                                | Laxmi publications (P) Ltd.             |  |  |  |  |  |  |  |
| 2.       | V.Ganesan, Internal Combustion Engines, Tata                                                    | McGraw-Hill Publishing Company          |  |  |  |  |  |  |  |
|          | Limited.                                                                                        |                                         |  |  |  |  |  |  |  |

|               | INDUSTRIAL TRAINING -I |              |   |   |       |   |   |           |          |       |         |
|---------------|------------------------|--------------|---|---|-------|---|---|-----------|----------|-------|---------|
| Code Category |                        | Periods/Week |   |   | Total |   |   | Sessional | End Exam | Total | Credits |
|               |                        | L            | Т | Р | L     | Т | Р | Marks     | Marks    | Marks | Cicuits |
| MEC 320       | PR                     | -            | - | - | -     | - | - | 0         | 100      | 100   | 2       |

#### Prerequisite: -

**Course Objectives:** The industrial training/ internship programs are intended to provide an exposure to the student on the industrial ambience, the intricacies involved in the industrial activities and the applications of theoretical concepts to solve problems encountered in industries.

The program is carried out twice in four year course each for a minimum duration of six weeks.

| Course Outcomes: At the end of the course the student will be able to: |                                                                                        |  |  |  |  |  |  |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO-1                                                                   | Understand the principles of engineering practice and ethical norms in an industry.    |  |  |  |  |  |  |
| CO-2                                                                   | Apply engineering knowledge to understand the industrial processes.                    |  |  |  |  |  |  |
| CO-3                                                                   | Develop skills to engage in independent learning in view of the technological changes. |  |  |  |  |  |  |

#### **Guidelines:**

- The industrial training/internships are done at the end of 2<sup>nd</sup> year 2<sup>nd</sup> semester for a minimum duration of six weeks in the summer. The internship can be done by the students at local industries, Govt. Organizations, MNC's, Power plants or any other company of his/her choice.
- Evaluation of the program will be done by a departmental committee. The student has to submit a report and appear for an oral presentation before the departmental committee. The report and the oral presentation shall carry 40% and 60% weightages respectively.

|                           | <b>PRODUCTION PLANNING &amp; CONTROL</b> |              |   |       |    |    |           |          |       |         |         |
|---------------------------|------------------------------------------|--------------|---|-------|----|----|-----------|----------|-------|---------|---------|
| (PROFESSIONAL ELECTIVE-I) |                                          |              |   |       |    |    |           |          |       |         |         |
| Code                      | Category                                 | Periods/Week |   | Total |    |    | Sessional | End Exam | Total | Credits |         |
| Code                      | Category                                 | L            | Т | Р     | L  | Т  | Р         | Marks    | Marks | Marks   | cicuits |
| MEC322(A)                 | PE                                       | 2            | 1 | -     | 32 | 16 | -         | 40       | 60    | 100     | 3       |

Prerequisites: Manufacturing Processes, Metal Cutting, Machine Tools & Metrology.

**Course Objectives:** To make the students acquaint with the planning and control of production operations.

| Course      | <b>Course Outcomes:</b> At the end of the course the student will be able to:                |  |  |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO-1        | Apply the functions of production planning and control in production organizations.          |  |  |  |  |  |  |
| CO-2        | Solve forecasting problems using the forecasting techniques to manage production operations. |  |  |  |  |  |  |
| CO-3        | Apply inventory models to plan and control the utilization of various resources.             |  |  |  |  |  |  |
| <b>CO-4</b> | Determine the plans for smooth and efficient running of production operations.               |  |  |  |  |  |  |
| CO-5        | Apply the functions of dispatching and progressing in production operations.                 |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 3   | 2   | 2   | -   | -   | -   | 2   | -   | -   | -    | 3    | -    |
| CO-2     | 3   | 2   | 2   | -   | -   | -   | 2   | -   | -   | -    | 3    | -    |
| CO-3     | 3   | 2   | 2   | -   | -   | -   | 2   | -   | -   | -    | 3    | -    |
| CO-4     | 3   | 2   | 2   | -   | -   | -   | 2   | -   | -   | -    | 3    | -    |
| CO-5     | 3   | 2   | 2   | -   | -   | -   | 2   | -   | -   | -    | 3    | -    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 2    | -    |
| CO-2            | 2    | -    |
| CO-3            | 2    | 2    |
| CO-4            | 2    | 2    |
| CO-5            | 2    | _    |

|                                                                                                                                                                                                                                                                  | SYLL                                                                                                                                                           | ABUS                                                                                                                                      |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| UNIT ·                                                                                                                                                                                                                                                           | - I                                                                                                                                                            | Periods: 6L+0T=6                                                                                                                          |  |  |  |
| INTRO                                                                                                                                                                                                                                                            | DUCTION TO PRODUCTION PLA                                                                                                                                      | ANNING AND CONTROL (PPC)                                                                                                                  |  |  |  |
| Definit                                                                                                                                                                                                                                                          | ion, objectives and functions of PPC, T                                                                                                                        | ypes of production, Organization of PPC.                                                                                                  |  |  |  |
|                                                                                                                                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                           |  |  |  |
| UNIT -                                                                                                                                                                                                                                                           | п                                                                                                                                                              | Periods: 6L+4T=10                                                                                                                         |  |  |  |
| FORE                                                                                                                                                                                                                                                             | CASTING                                                                                                                                                        |                                                                                                                                           |  |  |  |
| Importa<br>quantita<br>method                                                                                                                                                                                                                                    | ance of forecasting, Types of forecast<br>ative methods – least square method, n                                                                               | ting, Forecasting techniques – qualitative and<br>noving average method, exponential smoothing                                            |  |  |  |
| UNIT -                                                                                                                                                                                                                                                           | · III                                                                                                                                                          | Periods: 8L+8T =16                                                                                                                        |  |  |  |
| INVEN                                                                                                                                                                                                                                                            | TORY MANAGEMENT                                                                                                                                                |                                                                                                                                           |  |  |  |
| Function<br>determin<br>Materia<br>requires                                                                                                                                                                                                                      | ons of inventory, Inventory costs, A<br>inistic model without shortages, Invent<br>al Requirement Planning, MRP-II,<br>ment planning, Enterprise resource plar | ABC analysis, VED analysis, EOQ & EPQ<br>ory control systems – P-system and Q-system,<br>Aggregate planning strategies, Capacity<br>ming. |  |  |  |
| UNIT                                                                                                                                                                                                                                                             | N                                                                                                                                                              | Pariads: 61 +4T -10                                                                                                                       |  |  |  |
| ROUT                                                                                                                                                                                                                                                             | ING & SCHEDULING                                                                                                                                               |                                                                                                                                           |  |  |  |
| Loadin<br>Schedu<br>schedu<br>n mach                                                                                                                                                                                                                             | g.<br>Iling: Definition, Forward and backwar<br>ling – n jobs and 2 machines, n jobs and<br>ines, Line balancing.                                              | d scheduling, Gantt charts, Flow shop<br>1 3 machines, Job shop scheduling – 2 jobs and                                                   |  |  |  |
| UNIT ·                                                                                                                                                                                                                                                           | ·V                                                                                                                                                             | Periods: 6L+0T =6                                                                                                                         |  |  |  |
| DISPA                                                                                                                                                                                                                                                            | TCHING & PROGRESSING                                                                                                                                           |                                                                                                                                           |  |  |  |
| Dispate<br>Progre                                                                                                                                                                                                                                                | ching: Definition, Functions of dispatch ssing: Definition, Types of progressing                                                                               | ning, Duties of dispatcher.                                                                                                               |  |  |  |
| TEXT                                                                                                                                                                                                                                                             | BOOKS                                                                                                                                                          |                                                                                                                                           |  |  |  |
| TEXT BOOKS:         1.       R. Panneerselvam, Production and Operations Management, 3 <sup>rd</sup> edition, PHI, 2012.         2.       Martand Telsang, Industrial Engineering and Production Management, 3 <sup>rd</sup> edition, S. Chand & Co. Ltd., 2018. |                                                                                                                                                                |                                                                                                                                           |  |  |  |
| BEEEI                                                                                                                                                                                                                                                            | RENCE BOOKS                                                                                                                                                    |                                                                                                                                           |  |  |  |
| Image: All state1.S.                                                                                                                                                                                                                                             | K. Mukhopadhyay, Production Plann                                                                                                                              | ing and Control - Text & Cases, 3 <sup>rd</sup> edition,                                                                                  |  |  |  |
| P                                                                                                                                                                                                                                                                | HI, 2015.                                                                                                                                                      |                                                                                                                                           |  |  |  |
| WFRI                                                                                                                                                                                                                                                             | RESOURCES.                                                                                                                                                     |                                                                                                                                           |  |  |  |
| 1. ht                                                                                                                                                                                                                                                            | tps://nptel.ac.in/courses/110107141                                                                                                                            |                                                                                                                                           |  |  |  |
| 2. ht                                                                                                                                                                                                                                                            | tps://nptel.ac.in/courses/110105095                                                                                                                            |                                                                                                                                           |  |  |  |
| · · · · · ·                                                                                                                                                                                                                                                      | - •                                                                                                                                                            |                                                                                                                                           |  |  |  |

|                           | GAS TURBINES AND JET PROPULSION |              |   |      |       |    |   |           |          |       |         |
|---------------------------|---------------------------------|--------------|---|------|-------|----|---|-----------|----------|-------|---------|
| (PROFESSIONAL ELECTIVE-I) |                                 |              |   |      |       |    |   |           |          |       |         |
| Code                      | Category                        | Periods/Week |   | Veek | Total |    |   | Sessional | End Exam | Total | Credits |
| Code                      | Category                        | L            | Т | Р    | L     | Т  | Р | Marks     | Marks    | Marks | creatis |
| MEC322(B)                 | PE                              | 2            | 1 | -    | 32    | 16 | - | 40        | 60       | 100   | 3       |

**Prerequisite:** Basic Thermodynamics, Applied Thermal Engineering-II

**Course Objectives:** To provide an insight on the principles of compressible fluid flow, gas turbine power cycles and further to create an understanding of the working principles of axial flow compressors, axial flow gas turbines, combustion chambers and jet propulsion systems.

| Course      | <b>Outcomes:</b> At the end of the course the student will be able to:              |
|-------------|-------------------------------------------------------------------------------------|
| CO-1        | Analyze compressible fluid flow and its characteristics.                            |
|             |                                                                                     |
| <b>CO-2</b> | Explain the working principles of gas turbine power cycles and evaluate their       |
|             | performance characteristics.                                                        |
| CO-3        | Describe the working characteristics of Axial flow compressors, evaluate the effect |
|             | of blade design on the performance and further analyze operational disturbances.    |
| CO-4        | Explain the combustion phenomena in a gas turbine & identify the factors affecting  |
|             | combustion chamber design and performance & further explain the working             |
|             | principles of Axial flow gas turbines.                                              |
| CO-5        | Distinguish the different types of jet propulsion systems, their relative merits,   |
|             | demerits and applications and further analyze parameters affecting flight           |
|             | performance.                                                                        |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO-2     | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO-3     | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO-4     | 3   | 3   | -   | -   | -   | -   | 2   | -   | -   | -    | -    | -    |
| CO-5     | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 2    | -    |
| CO-2            | 2    | -    |
| CO-3            | 2    | -    |
| CO-4            | 2    | -    |
| CO-5            | 2    | -    |

| SYLL                                                                                     | ABUS                                                 |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|--|
| UNIT - I                                                                                 | Periods: 6L+3T=9                                     |  |  |  |  |  |  |
| INTRODUCTION TO COMPRESSIBLE FLOW                                                        |                                                      |  |  |  |  |  |  |
| Introduction- Conservation of Mass - Continu                                             | uity Equation- Conservation of Energy (First         |  |  |  |  |  |  |
| Law of Thermodynamics)- Momentum Equation- Sonic Velocity, Mach Number and Mach          |                                                      |  |  |  |  |  |  |
| Waves- Stagnation Temperature, Pressure and                                              | Enthalpy- Isentropic Flow Through a Passage          |  |  |  |  |  |  |
| of varying cross sectional Area- choking and isentropic flow, operation of nozzle under  |                                                      |  |  |  |  |  |  |
| varying pressure ratio- converging, converging                                           | g-diverging nozzle.                                  |  |  |  |  |  |  |
|                                                                                          |                                                      |  |  |  |  |  |  |
| UNIT - II                                                                                | Periods: 6L+3T=9                                     |  |  |  |  |  |  |
| GAS TURBINE POWER CYCLES                                                                 |                                                      |  |  |  |  |  |  |
| Introduction- Brayton Cycle- Brayton Cycle                                               | with Regeneration- Complex Cycle- Closed             |  |  |  |  |  |  |
| Cycle, Performance of actual gas turbine cyc                                             | ele: Efficiency of the compressor and Turbine        |  |  |  |  |  |  |
| Pressure or Flow Losses- Heat Exchanger Eff                                              | fectiveness- Effect of varying mass Flow-Loss        |  |  |  |  |  |  |
| due to incomplete combustion- Mechanical                                                 | Losses- Effect of Variable Specific Heats -          |  |  |  |  |  |  |
| Calculation of Fuel consumption and cycle Eff                                            | iciency- Polytropic Efficiency- Performance of       |  |  |  |  |  |  |
| Actual Cycles.                                                                           |                                                      |  |  |  |  |  |  |
|                                                                                          |                                                      |  |  |  |  |  |  |
| UNIT - III                                                                               | Periods: 8L+4T=12                                    |  |  |  |  |  |  |
| AXIAL FLOW COMPRESSORS                                                                   |                                                      |  |  |  |  |  |  |
| Introduction- Description- Principle of Operat                                           | ion- Performance Analysis- Momentum, Stage           |  |  |  |  |  |  |
| Velocity Diagrams, Symmetric Stage, Non-Sy                                               | mmetric Axial -in flow, Non-Symmetric Axial          |  |  |  |  |  |  |
| outflow- Actual Energy Transfer- Airofoil Ar                                             | alysis, One Dimensional Ideal Incompressible         |  |  |  |  |  |  |
| Flow, Two Dimensional flow With Friction                                                 | - Blading Efficiency, Losses in terms of Air         |  |  |  |  |  |  |
| Angles and Drag Co efficient- Coefficient of                                             | F Performance, Flow Coefficient ( $\Phi$ ), Pressure |  |  |  |  |  |  |
| Coefficient( $\psi$ p),Work Coefficient( $\Omega$ )- Blade L                             | loading- Cascade Characteristics-Blade angles-       |  |  |  |  |  |  |
| Reynolds and Mach Number Effects- Three D                                                | Dimensional flow Analysis, Radial Equilibrium        |  |  |  |  |  |  |
| Theory, Free Vortex Blades, Constant React                                               | ion Blades, Forced Vortex of Solid Rotation          |  |  |  |  |  |  |
| Blades, The General Design -Three Dimension                                              | onal Blades, Losses- Compressor Stall, Surge         |  |  |  |  |  |  |
| and choke- Overall Performance- Compressor                                               | Characteristics.                                     |  |  |  |  |  |  |
| 1                                                                                        |                                                      |  |  |  |  |  |  |
| UNIT - IV                                                                                | Periods: 8L+4T=12                                    |  |  |  |  |  |  |
| <b>COMBUSTION SYSTEMS &amp; AXIAL FLO</b>                                                | W GAS TURBINES                                       |  |  |  |  |  |  |
| Combustion Systems: Introduction- Combust                                                | ion theory applied to gas turbine combustion,        |  |  |  |  |  |  |
| factors affecting combustion chamber design                                              | and performance - Pressure loss, Combustion          |  |  |  |  |  |  |
| intensity and Efficiency; Requirements of the Combustion chamber- Process of Combustion  |                                                      |  |  |  |  |  |  |
| Combustion geometry, mixing and dilution, Combustion chamber arrangements. Axial Flow    |                                                      |  |  |  |  |  |  |
| Gas Turbines: Introduction- Description- Turbine and Nozzle efficiencies Degree of       |                                                      |  |  |  |  |  |  |
| Reaction, Ideal Impulse Turbine, Impulse Turbine with Loss, Blades Speed Ratio, Velocity |                                                      |  |  |  |  |  |  |
| Ratio and Torque, Velocity Compound Turbine (Curtis Stage)- The Reaction Turbine- Three  |                                                      |  |  |  |  |  |  |
| Dimensional Flow Analysis, The Free Vortex                                               | Blades.                                              |  |  |  |  |  |  |
|                                                                                          |                                                      |  |  |  |  |  |  |
|                                                                                          |                                                      |  |  |  |  |  |  |
|                                                                                          |                                                      |  |  |  |  |  |  |

| UNI   | NIT – V                                             | <b>Periods: 4L+2T=6</b>                   |
|-------|-----------------------------------------------------|-------------------------------------------|
| JET   | T PROPULSIONS                                       |                                           |
| Intro | roduction-The Ramjet Engine-The Pulse-jet l         | Engine- The Turbo-jet Engine-Thrust       |
| Equa  | uation-Specific Thrust of the Turbo Jet Engine      | e- Efficiencies- Inlet Diffuser or Ram    |
| Effic | iciency- thermal Efficiency of the Turbo Jet E      | ngine- Propulsive Efficiency - Overall    |
| Effic | iciency of a Propulsive system-parameters affecting | ng flight performance, Effect of Forward  |
| Spee  | eed- Effect of Altitude - Overall Turbojet Process  | - Thrust augmentation- The After burn,    |
| Iniec | ection of Water-Alcohol Mixtures- Bleed, Burn Cy    | vcles.                                    |
| J     | ·····, ···,                                         |                                           |
|       |                                                     |                                           |
| TEX   | EXT BOOKS:                                          |                                           |
| 1.    | V. Ganesan, Gas Turbines, 3rd edition, McGrav       | v Hill Education, 2017.                   |
| 2.    | P.R. Khajuria and S.P. Dubey, Gas Turbines and      | d Propulsive Systems, Dhanpat Rai         |
|       | Publiations, 2012.                                  |                                           |
|       |                                                     |                                           |
| REF   | FERENCE BOOKS:                                      |                                           |
| 1.    | Dr. R. Yadav ,Steam and Gas turbine and Powe        | er plant Engineering,7th edition, Central |
|       | Publishing House, 2000.                             |                                           |
| 2.    | H.I.H. Sarvanamuttoo,G.F.C. Rogers & H. Coh         | en, Gas Turbines Theory, 7th edition,     |
|       | Pearson Publications, 2017                          |                                           |
|       | · ·                                                 |                                           |
| WE    | EB RESOURCES:                                       |                                           |
| 1.    | http://www.nptel.ac.in/courses/112106166/           |                                           |
|       |                                                     |                                           |

|           | AUTOMATION IN MANUFACTURING<br>(PROFESSIONAL ELECTIVE-I) |            |            |           |    |            |   |                    |                   |                |         |
|-----------|----------------------------------------------------------|------------|------------|-----------|----|------------|---|--------------------|-------------------|----------------|---------|
| Code      | Category                                                 | Perie<br>L | ods/W<br>T | Veek<br>P | L  | Total<br>T | Р | Sessional<br>Marks | End Exam<br>Marks | Total<br>Marks | Credits |
| MEC322(C) | PE                                                       | 3          | -          | -         | 48 | -          | - | 40                 | 60                | 100            | 3       |

Prerequisite: Metal cutting, Machine Tools & Metrology

**Course Objectives:** To familiarize the students with the concepts of automation, its strategies and various production systems. To introduce the models of automated flow lines, line balancing, material storage, retrieval and inspection.

| Course | <b>Outcomes:</b> At the end of the course the student will be able to:             |
|--------|------------------------------------------------------------------------------------|
| CO-1   | Explain the basic principles of automation and its components which are            |
|        | implemented in production systems.                                                 |
| CO-2   | Differentiate different types of flow lines and elucidate their implementation in  |
|        | production systems.                                                                |
| CO-3   | Comprehend cellular manufacturing, forming part families, group technology and     |
|        | their involvement in flexible assembly lines and can solve assembly line balancing |
|        | problems.                                                                          |
| CO-4   | Ascertain the importance of material handling and storage and can identify various |
|        | material handling and storage systems used in production systems.                  |
| CO-5   | Explain various automated inspection methods, strategies and equipment.            |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 3   | 3   | -   | -   | -   | 1   | 1   | -   | -   | -    | -    | -    |
| CO-2     | 2   | 2   | -   | -   | -   | 2   | 1   | -   | -   | -    | -    | -    |
| CO-3     | 3   | 3   | -   | -   | -   | 2   | 1   | -   | -   | -    | -    | -    |
| CO-4     | 2   | 2   | -   | -   | -   | 2   | 1   | -   | -   | -    | -    | -    |
| CO-5     | 3   | 3   | -   | -   | -   | 2   | 1   | -   | -   | -    | -    | -    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 3    | -    |
| CO-2            | 2    | -    |
| CO-3            | 3    | -    |
| CO-4            | 2    | -    |
| CO-5            | 3    | -    |

|                          | SYLLABUS                                                                                       |  |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| UNI                      | T - I Periods: 10L+0T= 10                                                                      |  |  |  |  |  |  |
| INT                      | RODUCTION TO AUTOMATION                                                                        |  |  |  |  |  |  |
| Prod                     | luction systems, automation in production systems, automation principles and strategies,       |  |  |  |  |  |  |
| man                      | manufacturing operations, production facilities, levels of automation, basic elements of an    |  |  |  |  |  |  |
| auto                     | mated system, pneumatic and hydraulic components, circuits, automation in machine              |  |  |  |  |  |  |
| tools                    | s, mechanical feeding and tool changing and machine tool control.                              |  |  |  |  |  |  |
|                          |                                                                                                |  |  |  |  |  |  |
| UNI                      | T - II Periods: 8L+0T= 8                                                                       |  |  |  |  |  |  |
| AU                       | TOMATED FLOW LINES                                                                             |  |  |  |  |  |  |
| Met                      | hods of part transport, transfer mechanism, buffer storage, control function, design and       |  |  |  |  |  |  |
| fabri                    | cation considerations. Analysis of automated flow lines – General terminology and              |  |  |  |  |  |  |
| anal                     | ysis of transfer lines without and with buffer storage, partial automation, implementation     |  |  |  |  |  |  |
| of automated flow lines. |                                                                                                |  |  |  |  |  |  |
|                          |                                                                                                |  |  |  |  |  |  |
| UNI                      | T - III Periods: 10L+0T= 10                                                                    |  |  |  |  |  |  |
| ASS                      | EMBLY SYSTEM AND LINE BALANCING                                                                |  |  |  |  |  |  |
| Asse                     | embly systems: Fundamentals and analysis, cellular manufacturing, part families, coding        |  |  |  |  |  |  |
| and                      | production flow analysis, Assembly process and systems assembly line,                          |  |  |  |  |  |  |
| Line                     | <b>balancing</b> : methods, ways of improving line balance, flexible assembly lines.           |  |  |  |  |  |  |
|                          |                                                                                                |  |  |  |  |  |  |
| UNI                      | T - IV Periods: 10L+0T= 10                                                                     |  |  |  |  |  |  |
| AU                       | FOMATED MATERIAL HANDLING AND STORAGE SYSTEMS                                                  |  |  |  |  |  |  |
| Aut                      | omated material handling: Types of equipment, functions, analysis and design of                |  |  |  |  |  |  |
| mate                     | erial handling systems conveyor systems, automated guided vehicle systems.                     |  |  |  |  |  |  |
|                          |                                                                                                |  |  |  |  |  |  |
| Aut                      | omated storage systems: Automated storage and retrieval systems; work in process               |  |  |  |  |  |  |
| stora                    | age, interfacing handling and storage with manufacturing. automatic identification             |  |  |  |  |  |  |
| meth                     | nods, Barcode technology, RFID                                                                 |  |  |  |  |  |  |
|                          |                                                                                                |  |  |  |  |  |  |
| UNI                      | T - V Periods: 10L+0T=10                                                                       |  |  |  |  |  |  |
| AU                       | <b>FOMATED INSPECTION</b>                                                                      |  |  |  |  |  |  |
| Qua                      | lity in design and manufacturing, inspection principles and strategies, automated              |  |  |  |  |  |  |
| insp                     | ection: Methods and Equipment's, contact vs non-contact, Coordinate Measuring                  |  |  |  |  |  |  |
| Mac                      | Machine. Mission vision.                                                                       |  |  |  |  |  |  |
|                          | · · · · · · · · · · · · · · · · · · ·                                                          |  |  |  |  |  |  |
| ТЕХ                      | AT BOOKS:                                                                                      |  |  |  |  |  |  |
| 1.                       | Mikell, P. Groover, Automation, <i>Production Systems, and Computer-integrated</i>             |  |  |  |  |  |  |
|                          | Manufacturing, Pearson Publication, 4 <sup>th</sup> edition, 2016.                             |  |  |  |  |  |  |
| 2                        | D. Dadha Kaishaan & C. Sukashamanyam and Dair. CAD/CAM/CIM 2nd Edition Norm                    |  |  |  |  |  |  |
| ۷.                       | <b>P.</b> Kauna Krishnan & S. Suoranamanyam and Kaju, $CAD/CAM/CIM$ , 3rd Edition New          |  |  |  |  |  |  |
|                          | Age International Publishers, 4 edition, 2016.                                                 |  |  |  |  |  |  |
| 3.                       | Yorem Koren, Computer Control of Manufacturing Systems, McGraw Hill Education;                 |  |  |  |  |  |  |
|                          | 1st edition, 2017.                                                                             |  |  |  |  |  |  |
| 4.                       | Anup Goel, A.Jacob Moses, Dr. Subhash L. Gadhave, Vinavak V. Gaikwad, F. Sathish               |  |  |  |  |  |  |
|                          | Automation in Manufacturing Technology, Technical Publications, 1 <sup>st</sup> Edition, 2021. |  |  |  |  |  |  |

| RE | REFERENCE BOOKS:                                                                 |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1. | Tien-Chien Chang, Richard A. Wysk and Hsu-Pin Wang - Computer Aided              |  |  |  |  |  |  |
|    | Manufacturing, Pearson Publications, 3rd edition, 2005.                          |  |  |  |  |  |  |
| 2. | Dr. R. Thomas Wright, Mike Berkeihiser, Manufacturing and Automation Technology, |  |  |  |  |  |  |
|    | Goodheart-Willcox Publications, 3rd edition, 2011                                |  |  |  |  |  |  |
|    |                                                                                  |  |  |  |  |  |  |
| WE | B RESOURCES:                                                                     |  |  |  |  |  |  |
| 1. | https://nptel.ac.in/courses/112102011                                            |  |  |  |  |  |  |
| 2. | https://nptel.ac.in/courses/112104288                                            |  |  |  |  |  |  |

|           | NON-DESTRUCTIVE TESTING     |              |   |   |       |   |   |           |          |       |         |
|-----------|-----------------------------|--------------|---|---|-------|---|---|-----------|----------|-------|---------|
|           | (PROFESSIONAL ELECTIVE - I) |              |   |   |       |   |   |           |          |       |         |
| Code      | Catagory                    | Periods/Week |   |   | Total |   |   | Sessional | End Exam | Total | Credits |
| Code      | Category                    | L            | Т | Р | L     | Т | Р | Marks     | Marks    | Marks | cicuits |
| MEC322(D) | PE                          | 3            | - | - | 48    | - | - | 40        | 60       | 100   | 3       |

Prerequisite: Engineering Physics, Material science and Metallurgy

**Course Objectives:** To give an insight to the students on the basic principles of various NDT methods, fundamentals, discontinuities in different product forms, importance of NDT, applications, limitations of NDT methods and techniques.

| Course | <b>Outcomes:</b> At the end of the course the student will be able to:                                        |
|--------|---------------------------------------------------------------------------------------------------------------|
| CO-1   | Explain the importance of NDT in industries and describe the working principle of Liquid<br>Penetrant Testing |
| CO-2   | Analyze the defects of the components by applying the principles of magnetic particle testing.                |
| CO-3   | Analyze the welding and casting defects by applying radiography technique                                     |
| CO-4   | Examine the base material by ultrasonic testing technique                                                     |
| CO-5   | Examine the leaks corrosion and creep damage using acoustic emission testing.                                 |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 3   | 2   | -   | -   | -   | -   | -   | 2   | -   | -    | -    | -    |
| CO-2     | 3   | 2   | -   | -   | -   | -   | -   | 2   | -   | -    | -    | -    |
| CO-3     | 3   | 2   | -   | -   | -   | -   | -   | 2   | -   | -    | -    | -    |
| CO-4     | 3   | 2   | -   | -   | -   | -   | -   | 2   | -   | -    | -    | -    |
| CO-5     | 3   | 2   | -   | -   | -   | -   | -   | 2   | -   | -    | -    | -    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 2    | -    |
| CO-2            | 2    | -    |
| CO-3            | 2    | -    |
| CO-4            | 2    | -    |
| CO-5            | 2    | -    |

|                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| UNIT I                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| UNII – I<br>INTRODUCTION TO NON DESTRUCTIVE TEST                                                                                                                                                                                                                                                                                                                       | NDT) TECHNIQUES                                                                                                                                                                                                                                                   |  |  |  |  |  |
| History Surface NDT methods Visual Testing –                                                                                                                                                                                                                                                                                                                           | vision lightning and material attributes                                                                                                                                                                                                                          |  |  |  |  |  |
| environmental factors, visual percention, direct and i                                                                                                                                                                                                                                                                                                                 | ndiract methods, light sources and special                                                                                                                                                                                                                        |  |  |  |  |  |
| lishtning inspection shireting some line along the strift                                                                                                                                                                                                                                                                                                              | indirect methods, light sources and special                                                                                                                                                                                                                       |  |  |  |  |  |
| ingnining, inspection objectives, sampling plan, classifica                                                                                                                                                                                                                                                                                                            | ation of indications for acceptance criteria –                                                                                                                                                                                                                    |  |  |  |  |  |
| codes, standards and specifications with significance to N                                                                                                                                                                                                                                                                                                             | ational industries                                                                                                                                                                                                                                                |  |  |  |  |  |
| Liquid Penetrant Test (LPT): Principles – types and proper                                                                                                                                                                                                                                                                                                             | ties of liquid penetrants - application of Liquid                                                                                                                                                                                                                 |  |  |  |  |  |
| penetrants to parts – dye penetrant process - different washa                                                                                                                                                                                                                                                                                                          | ble systems – removal of excess penetrants –                                                                                                                                                                                                                      |  |  |  |  |  |
| developers – post cleaning - emulsifiers – special lighting for                                                                                                                                                                                                                                                                                                        | penetrant testing – calibration– interpretation                                                                                                                                                                                                                   |  |  |  |  |  |
| and evaluation of test results – applicable codes and standards                                                                                                                                                                                                                                                                                                        | OILP1.                                                                                                                                                                                                                                                            |  |  |  |  |  |
| UNIT - II                                                                                                                                                                                                                                                                                                                                                              | Periods: 10L+0T=10                                                                                                                                                                                                                                                |  |  |  |  |  |
| MAGNETIC PARTICLE TEST (MPT)                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Theory of magnetism - ferromagnetic, paramagnetic n                                                                                                                                                                                                                                                                                                                    | naterials, characteristics of magnetic fields,                                                                                                                                                                                                                    |  |  |  |  |  |
| magnetic hysteresis - principle of operation of magnetic                                                                                                                                                                                                                                                                                                               | particle test, Surface strength characteristics                                                                                                                                                                                                                   |  |  |  |  |  |
| - depth of magnetic field penetration factors – circular and longitudinal magnetization technique                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Eddy current inspection, application, advantages and limitations.                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Magnetic Particle Testing Equipment: method of magn                                                                                                                                                                                                                                                                                                                    | etization, inspection materials, wet and dry                                                                                                                                                                                                                      |  |  |  |  |  |
| particles, portable, mobile and stationary equipment, calib                                                                                                                                                                                                                                                                                                            | ration, dry continuous method, wet residual                                                                                                                                                                                                                       |  |  |  |  |  |
| method, interpretation and evaluation of test indications -                                                                                                                                                                                                                                                                                                            | principles and methods of demagnetization-                                                                                                                                                                                                                        |  |  |  |  |  |
| residual magnetism – applicable codes and standards used in r                                                                                                                                                                                                                                                                                                          | national industries                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| UNII - III<br>DADIOCDADIIX TEST (DT)                                                                                                                                                                                                                                                                                                                                   | Periods: 10L+01=10                                                                                                                                                                                                                                                |  |  |  |  |  |
| KADIOGRAPHY IESI (KI)                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Principle of Radiography, Radiation isotopes sources –                                                                                                                                                                                                                                                                                                                 | types and characteristics, X-ray source –                                                                                                                                                                                                                         |  |  |  |  |  |
| generation and properties, industrial X-ray tubes – film c.                                                                                                                                                                                                                                                                                                            | haracteristic exposure charts, contrast study –                                                                                                                                                                                                                   |  |  |  |  |  |
| quality, intensity, operational characteristics of X-ray equip                                                                                                                                                                                                                                                                                                         | pment - X- ray film – structure and types for                                                                                                                                                                                                                     |  |  |  |  |  |
| industrial radiography - Image Quality - sensitivity – Image                                                                                                                                                                                                                                                                                                           | ge Quality Indicators – Intensifying screens –                                                                                                                                                                                                                    |  |  |  |  |  |
| Intensification factor, control of scattered fadiation, filters, d                                                                                                                                                                                                                                                                                                     | appragms, masks.                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Radiography Interpretation and Safety Precautions:                                                                                                                                                                                                                                                                                                                     | relation and control Intermetation of                                                                                                                                                                                                                             |  |  |  |  |  |
| chamber, operational infitts of exposures – Radiation naza                                                                                                                                                                                                                                                                                                             | rus evaluation and control - Interpretation of                                                                                                                                                                                                                    |  |  |  |  |  |
| radiographs for weids, castings and inspection standards - ap                                                                                                                                                                                                                                                                                                          | pheable codes, standards and specifications for                                                                                                                                                                                                                   |  |  |  |  |  |
| national industries.                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| UNIT - IV<br>III TRASONIC TEST (IIT)                                                                                                                                                                                                                                                                                                                                   | Periods: 10L+0T=10                                                                                                                                                                                                                                                |  |  |  |  |  |
| UNIT - IV<br>ULTRASONIC TEST (UT)<br>Fundamentals of Ultrasonic Wayes - Nature of sound wayes                                                                                                                                                                                                                                                                          | Periods: 10L+0T=10                                                                                                                                                                                                                                                |  |  |  |  |  |
| UNIT - IV<br>ULTRASONIC TEST (UT)<br>Fundamentals of Ultrasonic Waves - Nature of sound waves<br>wave generation - longitudinal waves, transverse waves, sur                                                                                                                                                                                                           | Periods: 10L+0T=10                                                                                                                                                                                                                                                |  |  |  |  |  |
| UNIT - IV<br>ULTRASONIC TEST (UT)<br>Fundamentals of Ultrasonic Waves - Nature of sound waves<br>wave generation – longitudinal waves, transverse waves, sur<br>and wavelength of ultrasonic waves – Ultrasonic pressur                                                                                                                                                | Periods: 10L+0T=10<br>, wave propagation in metals– modes of sound<br>rface waves, lamb waves –Velocity, frequency<br>e_intensity and impedance – Attenuation of                                                                                                  |  |  |  |  |  |
| UNIT - IV<br>ULTRASONIC TEST (UT)<br>Fundamentals of Ultrasonic Waves - Nature of sound waves<br>wave generation – longitudinal waves, transverse waves, su<br>and wavelength of ultrasonic waves – Ultrasonic pressur<br>ultrasonic waves – Snell's law and critical angles – ultras                                                                                  | <b>Periods: 10L+0T=10</b><br>, wave propagation in metals– modes of sound<br>rface waves, lamb waves –Velocity, frequency<br>e, intensity and impedance – Attenuation of<br>sonic beam split – wave propagation in other                                          |  |  |  |  |  |
| UNIT - IV<br>ULTRASONIC TEST (UT)<br>Fundamentals of Ultrasonic Waves - Nature of sound waves<br>wave generation – longitudinal waves, transverse waves, sur<br>and wavelength of ultrasonic waves – Ultrasonic pressur<br>ultrasonic waves – Snell's law and critical angles – ultras<br>engineering materials                                                        | Periods: 10L+0T=10<br>, wave propagation in metals– modes of sound<br>rface waves, lamb waves –Velocity, frequency<br>e, intensity and impedance – Attenuation of<br>sonic beam split – wave propagation in other                                                 |  |  |  |  |  |
| UNIT - IV<br>ULTRASONIC TEST (UT)<br>Fundamentals of Ultrasonic Waves - Nature of sound waves<br>wave generation – longitudinal waves, transverse waves, su<br>and wavelength of ultrasonic waves – Ultrasonic pressur<br>ultrasonic waves – Snell's law and critical angles – ultras<br>engineering materials.<br>Ultrasonic Inspection Methods and Equipment and Saf | Periods: 10L+0T=10<br>, wave propagation in metals– modes of sound<br>rface waves, lamb waves –Velocity, frequency<br>e, intensity and impedance – Attenuation of<br>sonic beam split – wave propagation in other<br>ety: Principle of pulse echo method, through |  |  |  |  |  |

transmission method, resonance method – Advantages, limitations - Data presentation A, B and C scan displays - Ultrasonic testing and evaluation of base material - Ultrasonic test indications, safety and precautions.

| UN | UNIT - V                                                                                                    | Periods: 9L+0T=9                    |  |  |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|--|--|--|
| A  | ACOUSTIC EMISSION TECHNIQUE (AET)                                                                           |                                     |  |  |  |  |  |  |  |  |
| P  | Principles of acoustic emission technique - sources such as melting, twinning, and phase transformations    |                                     |  |  |  |  |  |  |  |  |
| i  | in metals - detection and interpretation of AE signals - importance of signal conditioning, detection,      |                                     |  |  |  |  |  |  |  |  |
| р  | processing.                                                                                                 |                                     |  |  |  |  |  |  |  |  |
| A  | Acoustic Emission Test systems and applications: Instrumentation, sensor, amplifier, filter, display, and   |                                     |  |  |  |  |  |  |  |  |
| s  | storage equipment – applications - leak test, detection of active corrosion, detecting creep damage in high |                                     |  |  |  |  |  |  |  |  |
| е  | energy piping (HEP) systems, pressure vessel inspection, advantages                                         | s and disadvantages.                |  |  |  |  |  |  |  |  |
|    |                                                                                                             | 6                                   |  |  |  |  |  |  |  |  |
|    |                                                                                                             |                                     |  |  |  |  |  |  |  |  |
| TF | TEXT BOOKS:                                                                                                 |                                     |  |  |  |  |  |  |  |  |
| 1  | 1 J. B. Hull, Vernon John, Non Destructive Testing, Macmillan Edu                                           | ication, 1988.                      |  |  |  |  |  |  |  |  |
| 2  | 2 J Prasad and C. G. Krishnadas Nair, Non-Destructive Test and Ev                                           | aluation of Materials, 2nd Edition, |  |  |  |  |  |  |  |  |
|    |                                                                                                             |                                     |  |  |  |  |  |  |  |  |
| RI | REFERENCE BOOKS:                                                                                            |                                     |  |  |  |  |  |  |  |  |
| 1  | 1 Barkanov, Evgeny N.; Dumitrescu, Andrei; Parinov, Ivan A, Non                                             | -destructive Testing and Repair     |  |  |  |  |  |  |  |  |

of Pipelines, Springer International Publishing AG, 2017.

## WEB RESOURCES:

1 www.ndt-ed.org/recoursecenter

| <b>REFRIGERATION &amp; AIR-CONDITIONING</b> |          |              |   |       |    |   |           |          |       |         |   |
|---------------------------------------------|----------|--------------|---|-------|----|---|-----------|----------|-------|---------|---|
| (PROFESSIONAL ELECTIVE-II)                  |          |              |   |       |    |   |           |          |       |         |   |
| Code                                        | Category | Periods/Week |   | Total |    |   | Sessional | End Exam | Total | Credits |   |
|                                             |          | L            | Т | Р     | L  | Т | Р         | Marks    | Marks | Marks   |   |
| MEC 323 (A)                                 | PE       | 2            | 1 | -     | 48 | - | -         | 40       | 60    | 100     | 3 |

Prerequisite: Basic Thermodynamics, Applied Thermal Engineering-I

**Course Objectives:** To acquaint the student with the working of various popular refrigeration systems, their applications and performance evaluation techniques and enable them to apply the basics of psychrometry in calculating air conditioning loads.

| Course | <b>Course Outcomes:</b> At the end of the course the student will be able to:                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO-1   | Identify the appropriate refrigeration method for the given application and also                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|        | evaluate the performance of air refrigeration systems.                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| CO-2   | Designate different refrigerants and select suitable refrigerant for the given<br>application. Further, the student will be able to evaluate the performance of vapour<br>compression refrigeration systems and suggest performance improvement methods. |  |  |  |  |  |  |  |  |
| CO-3   | Explain the need for multi-pressure systems, flash gas removal, flash intercooling techniques and further explain the functioning of some important evaporators, expansion devices used in vapor compression refrigeration systems.                      |  |  |  |  |  |  |  |  |
| CO-4   | Demonstrate the working principles of vapor absorption, steam-jet and vortex tube refrigeration systems and further evaluate the performance of VARS.                                                                                                    |  |  |  |  |  |  |  |  |
| CO-5   | Analyze air-conditioning processes using the principles of Psychrometry and<br>explain the concept of comfort air-conditioning and calculate air conditioning<br>loads.                                                                                  |  |  |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 3   | 3   | 3   | -   | -   | 2   | 2   | -   | -   | -    | -    | -    |
| CO-2     | 3   | 3   | 3   | 2   | -   | 3   | 2   | -   | -   | -    | -    | -    |
| CO-3     | 3   | 2   | 2   | -   | -   |     | 2   | -   | -   | -    | -    | -    |
| CO-4     | 3   | 2   | 2   | -   | -   | 2   | 2   | -   | -   | -    | -    | -    |
| CO-5     | 3   | 3   | 3   | 2   | -   | 3   | 2   | -   | -   | -    | -    | -    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 3    | -    |
| CO-2            | 3    | -    |
| CO-3            | 2    | -    |
| CO-4            | 2    | -    |
| CO-5            | 3    | -    |

CO- Course Outcome; PO- Program Outcome; PSO-Program Specific Outcome; Level- 1: Low, 2: Medium, 3: High Department of Mechanical Engineering, ANITS.

| SYLLABUS                              |                  |  |  |  |  |  |  |  |
|---------------------------------------|------------------|--|--|--|--|--|--|--|
| UNIT - I                              | Periods: 6L+3T=9 |  |  |  |  |  |  |  |
| INTRODUCTION AND A ID DEEDICED ATION. |                  |  |  |  |  |  |  |  |

**INTRODUCTION AND AIR REFRIGERATION:** Methods of Refrigeration; Joule-Thomson coefficient; liquefaction of gases by Linde's process;

Unit of Refrigeration; Applications of Refrigeration.

Reversal Carnot cycle; Bell-Colemann cycle; Air cycle systems for air craft refrigeration; Boot strap system; Regenerative cycle; Reduced ambient type; Comparison of different systems.

| UNIT - II                      | Periods: 6L+3T=9           |
|--------------------------------|----------------------------|
| REFRICERANTS AND SIMPLE VAPOUR | COMPRESSION REFRICERATION: |

Classification of Refrigerants; Nomenclature; Properties; Selection of refrigerants.

Wet versus Dry compression; Effect of evaporator and condenser pressures; Liquid subcooling; superheating; Simple vapour compression refrigeration cycle and its analysis; Actual VCRS; Methods of improving C.O.P;

| UN | - TIV | III  |         |        |     |        |       |     |      |      |    | Periods: 6L+3T=9 |
|----|-------|------|---------|--------|-----|--------|-------|-----|------|------|----|------------------|
| M  | ULT   | I-PF | RESSURE | VAPOUR | CON | IPRESS | ION A | AND | COMP | ONEN | TS |                  |
| n  | •     | 0    |         |        |     |        |       | 1 1 |      |      |    |                  |

Basics of multi pressure systems; Flash gas removal and Flash inter cooling.

Classification of evaporators, working of Once through, Flooded, Shell and tube, Baudelot cooler type evaporators.

Classification of expansion devices, Classification; working of Automatic expansion valve, Capillary expansion device and Thermostatic expansion device.

| UNIT - IV                              | Periods: 6L+3T=9 |
|----------------------------------------|------------------|
| <b>UN-CONVENTIONAL REFRIGERATION S</b> | SYSTEMS:         |

Simple Vapour Absorption Refrigeration System; Maximum C.O.P. of absorption refrigeration system; Common refrigerant-absorbent systems; Aqua ammonia absorption system; Li-Br absorption refrigeration system; Electrolux refrigeration; Comparison of vapour compression and vapour absorption system, Steam jet refrigeration system; Thermoelectric refrigeration system; vortex tube refrigeration system.

| UNIT - V          | Periods: 8L+4T=12 |
|-------------------|-------------------|
| AIR-CONDITIONING: |                   |

Fundamentals of psychrometry; Basic processes in conditioning of air; Sensible heat factor; By pass factor; Air washer: Water injection, Steam injection; Summer and Winter air-conditioning systems; Different types of air-conditioning loads; RSHF; GSHF; Fresh air quantity; Effective temperature; Comfort chart; Human comfort.

#### **TEXT BOOKS:**

1. S.C. Arora and S. Domkundwar, *A Course in Refrigeration and Air-conditioning*, Dhanpat Rai Publications, 2018.

## III YEAR – II SEMESTER

| 2.        | C.P. Arora, <i>Refrigeration and Air conditioning</i> , 3 <sup>rd</sup> Edition, Tata Mc Graw Hill publishers, 2012.                            |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.        | R.K. Rajput, A Textbook of Refrigeration and Air-Conditioning, S.K. Kataria & Sons, 2013.                                                       |
|           |                                                                                                                                                 |
| RE        | FERENCE BOOKS:                                                                                                                                  |
| 1.        | P.L. Bellany, <i>Refrigeration and Air conditioning</i> , 6th edition, Khanna publishers, 1983.                                                 |
| 2.        | S.S. Thipse, <i>Refrigeration and Air conditioning</i> Jaico Publishing House, 2005.                                                            |
| 3.        | Roy J. Dossat, Principles of Refrigeration, Wiley Limited, 1978                                                                                 |
| 4.        | Stoecker W.F. and Jones J.W, <i>Refrigeration and Air-Conditioning</i> , McGraw-Hill, New Delhi, 1983                                           |
| DA        | TA BOOKS:                                                                                                                                       |
| M.<br>Uni | L. Mathur, and F. S. Mehta, <i>Refrigerant and Psychometric Properties - Tables and Charts [SI ts]</i> , Jain Brothers, 2020 (Revised Edition). |
| WE        | CB RESOURCES:                                                                                                                                   |
| 1.        | http://dte.karnataka.gov.in/Institutes/gptkampli/GenericDocHandler/68-fc177b7d-f5d1-4580-<br>b577-b1118df994f4.pdf                              |
| 2.        | https://nptel.ac.in/courses/112105129                                                                                                           |
| 3.        | https://mrcet.com/downloads/digital_notes/ME/III%20year/R&AC%20NOTES.pdf                                                                        |
| 4.        | https://gmpua.com/CleanRoom/HVAC/Cooling/Handbook%20of%20Air%20Conditioning%<br>20and%20Refrigeration.pdf                                       |
| 5.        | https://nptel.ac.in/courses/112/107/112107208                                                                                                   |
| 6.        | https://nptel.ac.in/courses/112/105/112105128/                                                                                                  |
|           | 1                                                                                                                                               |

| POWER PLANT ENGINEERING    |          |              |   |   |       |   |   |           |          |       |         |
|----------------------------|----------|--------------|---|---|-------|---|---|-----------|----------|-------|---------|
| (PROFESSIONAL ELECTIVE-II) |          |              |   |   |       |   |   |           |          |       |         |
| Code                       | Category | Periods/Week |   |   | Total |   |   | Sessional | End Exam | Total | Credits |
|                            |          | L            | Т | Р | L     | Т | Р | Marks     | Marks    | Marks |         |
| MEC323(B)                  | PE       | 3            | - | - | 48    | - | - | 40        | 60       | 100   | 3       |

**Prerequisite:** Basic Thermodynamics, Applied Thermal Engineering-II

**Course Objectives:** The course is intended to provide overall view of all types of power plants, their working principles and further create a clear cut understanding of the economies of power plants and fixation of tariff rates.

| <b>Course Outcomes:</b> At the end of the course the student will be able to: |                                                                                  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO-1                                                                          | Explain the working principle of steam power plant and its accessories           |  |  |  |  |  |  |
| CO-2                                                                          | Explain the accessory systems working in tandem with internal combustion engine  |  |  |  |  |  |  |
|                                                                               | power plant and different configurations of gas turbine power plant              |  |  |  |  |  |  |
| CO-3                                                                          | Describe different components of hydroelectric power plant and evaluate rainfall |  |  |  |  |  |  |
|                                                                               | and run-off estimation                                                           |  |  |  |  |  |  |
| CO-4                                                                          | Describe the working principle and construction features of nuclear power plant  |  |  |  |  |  |  |
|                                                                               | and further classify reactors.                                                   |  |  |  |  |  |  |
| CO-5                                                                          | Analyze power plant economics and evaluate power tariff.                         |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 3   | 2   | -   | -   | -   | 2   | -   | -   | -   | -    | -    | -    |
| CO-2     | 3   | 3   | 2   | -   | -   | 2   | -   | -   | -   | -    | -    | -    |
| CO-3     | 3   | 2   | 2   | -   | -   | 2   | -   | -   | -   | -    | -    | -    |
| CO-4     | 3   | 2   | -   | -   | -   | 2   | 2   | -   | -   | -    | -    | -    |
| CO-5     | 3   | 3   | 2   | -   | -   | 2   | -   | -   | -   | -    | -    | -    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 2    | -    |
| CO-2            | 3    | -    |
| CO-3            | 2    | -    |
| CO-4            | 2    | -    |
| CO-5            | 3    | -    |

| SYLL                                              | ABUS                                                |
|---------------------------------------------------|-----------------------------------------------------|
| UNIT - I                                          | Periods: 9L+0T=9                                    |
| STEAM POWER PLANTS                                |                                                     |
| General layout, fuel handling, burning of coa     | al - stoker firing -classification and principle,   |
| pulverised fuel firing -advantages and types      | of systems, draught systems- definition and         |
| types, boilers - fire tube boilers - Cochran      | boiler, Lancashire boiler, water tube boilers-      |
| Babcock and Wilcox boiler, Stirling boiler, I     | high pressure and forced circulation boilers -      |
| Lamont boiler,                                    |                                                     |
|                                                   |                                                     |
|                                                   | Deviades 111 OT 11                                  |
| UNII - II<br>DIESEL ENCINE POWER PLANTS           | Periods: 11L+01=11                                  |
| Introduction general layout of plant applicat     | ions different systems of diesel power plant        |
| supercharging                                     | ions, unrerent systems of deser power plant,        |
| superentinging.                                   |                                                     |
| GAS TURBINE POWER PLANTS                          |                                                     |
| Introduction, classification - open cycle a       | nd closed cycle gas turbine power plant,            |
| components -compressor, intercoolers, heat ex     | xchangers, combustion chamber, gas turbines,        |
| different arrangements of gas turbine power p     | plant, gas turbine fuels, simple Brayton cycle,     |
| combined gas turbine and steam power plants -     | -basics.                                            |
|                                                   |                                                     |
|                                                   | Poriods: 101   0T-10                                |
| HYDROELECTRIC POWER PLANTS                        |                                                     |
| Introduction, hydrology, hydrologic cycle,        | rainfall, runoff and their measurement,             |
| hydrograph, flow duration curve, mass curve       | , classification of hydroelectric power plants,     |
| plant layout and its operation, elements of h     | vdroelectric power plant - dam, surge tanks.        |
| spillways, draft tubes, conduits, power house, y  | water hammer effect.                                |
|                                                   |                                                     |
|                                                   |                                                     |
| UNIT - IV                                         | Periods: 9L+0T=9                                    |
| NUCLEAR POWERP PLANIS                             | duction factor moderation fortile and fiscile       |
| mitoduction, isotopes, nuclear fission, repro-    | ification DWP DWP CANDU gas cooled                  |
| materials, nuclear reactors, components, class    | ala madamatan applant control rada reflactor        |
| eladding material types of nuclear westes and     | radioactiva wasta disposal systems                  |
| cladding material, types of nuclear wastes and    | radioactive waste disposar systems.                 |
|                                                   |                                                     |
| UNIT - V                                          | Periods: 9L+0T=9                                    |
| POWER PLANT ECONOMICS                             |                                                     |
| load curves, load duration curves, different      | terms and definitions- connected load, max          |
| demand, demand factor, average load, load fac     | tor, diversity factor, plant capacity factor, plant |
| use factor - simple problems, cost analysis, s    | selection of type of generation, economics in       |
| plant selection, base load plants, peak load plan | nts, tariff methods for electrical energy- simple   |
| problems.                                         |                                                     |
|                                                   |                                                     |
|                                                   |                                                     |

# III YEAR – II SEMESTER

| TEX | XT BOOKS:                                                                           |
|-----|-------------------------------------------------------------------------------------|
| 1.  | S.C.Arora & S. Domkundawar, A Course in Power Plant Engineering, Dhanpat Rai &      |
|     | co (P) Ltd, New Delhi.                                                              |
| 2.  | R.K.Rajput, A Textbook of Power Plant Engineering, 5th edition, Laxmi publications  |
|     | (P) Ltd, New Delhi 2007.                                                            |
|     |                                                                                     |
| REF | FERENCE BOOKS:                                                                      |
| 1.  | Dr P.C.Sharma, A textbook of power plant engineering, S.K.Kataria & Sons, New Delhi |
|     | 2016.                                                                               |
| 2.  | P.K.Nag Power Plant Engineering 4th edition, Tata McGraw Hill publishers, 2014.     |
| 3.  | A.K.Raja, Amit Prakash Srivastava, Manish Dwivedi Power Plant Engineering, 1st      |
|     | edition.                                                                            |
|     |                                                                                     |
|     |                                                                                     |
| WE  | B RESOURCES:                                                                        |
| 1.  | http://nptel.ac.in/courses/108105058/9                                              |
| 2.  | http://www.powermag.com                                                             |
|     |                                                                                     |

# III YEAR – II SEMESTER

| NANOTECHNOLOGY<br>(PROFESSIONAL ELECTIVE-II) |          |              |   |   |       |   |   |           |          |       |         |
|----------------------------------------------|----------|--------------|---|---|-------|---|---|-----------|----------|-------|---------|
| Code                                         | Category | Periods/Week |   |   | Total |   |   | Sessional | End Exam | Total | Credits |
|                                              |          | L            | Т | Р | L     | Т | Р | Marks     | Marks    | Marks | Cicuits |
| MEC 323(C)                                   | PE       | 3            | - | - | 48    | - | - | 40        | 60       | 100   | 3       |

Prerequisite: Engineering physics, Engineering chemistry, Material science & Metallurgy

**Course Objectives:** To acquaint the student on the basic scientific concepts of nanoscience, properties of nanomaterials, characterization of materials, synthesis, fabrication and also the applications of nanotechnology in various science, engineering and technology fields.

| Course Outcomes: The student will be able to: |                                                                                      |  |  |  |  |  |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO-1                                          | Designate the nano materials based on their properties and crystal lattice.          |  |  |  |  |  |  |
| CO-2                                          | Analyze and apply different techniques used in the synthesis and fabrication of nano |  |  |  |  |  |  |
|                                               | materials in the form of thin films, nano structures etc.,                           |  |  |  |  |  |  |
| <b>CO-3</b>                                   | Comprehend and apply various characterization techniques to evaluate the structure   |  |  |  |  |  |  |
|                                               | of nanoparticles.                                                                    |  |  |  |  |  |  |
| <b>CO-4</b>                                   | Characterize carbon allotropes, analyze their morphology and illustrate the          |  |  |  |  |  |  |
|                                               | applications of carbon nano technology.                                              |  |  |  |  |  |  |
| CO-5                                          | Demonstrate the applications of nanotechnology in various steams of engineering,     |  |  |  |  |  |  |
|                                               | environment and sciences.                                                            |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 2   | 1   | -   | -   | -   | 1   | 1   | -   | -   | -    | -    | -    |
| CO-2     | 2   | 2   | 2   | -   | -   | 1   | 1   | -   | -   | -    | -    | -    |
| CO-3     | 2   | 2   | 2   | -   | -   | 1   | 1   | -   | -   | -    | -    | -    |
| CO-4     | 3   | 2   | 2   | -   | -   | 2   | 2   | -   | -   | _    | -    | -    |
| CO-5     | 3   | -   | -   | _   | -   | 2   | 2   | -   | -   | _    | _    | _    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 1    | -    |
| CO-2            | 2    | -    |
| CO-3            | 2    | -    |
| CO-4            | 2    | -    |
| CO-5            | -    | -    |

| REFERENCE BOOKS: |                                                                              |  |  |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1.               | Charles P.Poole, Jr., Frank J.Owens, Introduction to NanoTechnology,         |  |  |  |  |  |  |  |
|                  | Wileypublishers, Apr 16,2004                                                 |  |  |  |  |  |  |  |
| 2.               | Jermy JRamsden, Nanotechnology Elsevierpublishers, Sep19, 2012               |  |  |  |  |  |  |  |
| 3.               | A.K.Bandyopadhyay, NanoMaterials, NewAgeInternationalPublishers, Year: 2007. |  |  |  |  |  |  |  |
| 4.               | T.Pradeep, NanoEssentials, TMH, Jan20, 2007.                                 |  |  |  |  |  |  |  |
| 5.               | M.AShah, K.AShah, Nanotechnology the Science of Small Wiley Publishers,      |  |  |  |  |  |  |  |
|                  | Year:2013.                                                                   |  |  |  |  |  |  |  |
| 6.               | PhaniKumar, Principles of Nanotechnology, Scitech, Year: 2010.               |  |  |  |  |  |  |  |
|                  |                                                                              |  |  |  |  |  |  |  |
|                  |                                                                              |  |  |  |  |  |  |  |
| WE               | B KESUUKUES:                                                                 |  |  |  |  |  |  |  |

1. https://nptel.ac.in/courses/118102003

| QUALITY & RELIABILITY ENGINEERING |          |              |   |   |       |   |   |           |          |       |         |
|-----------------------------------|----------|--------------|---|---|-------|---|---|-----------|----------|-------|---------|
| (PROFESSIONAL ELECTIVE-II)        |          |              |   |   |       |   |   |           |          |       |         |
| Code                              | Category | Periods/Week |   |   | Total |   |   | Sessional | End Exam | Total | Credits |
|                                   |          | L            | Т | Р | L     | Т | Р | Marks     | Marks    | Marks | Cicuits |
| MEC323(D)                         | PE       | 3            | - | - | 48    | - | - | 40        | 60       | 100   | 3       |

Prerequisite: Industrial Engineering and Management

**Course Objectives:** Students will be acquainted with the basic knowledge of Quality control and Reliability Engineering

| Course | Course Outcomes: At the end of the course the student will be able to                    |  |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CO-1   | Demonstrate knowledge of quality management principles, techniques and philosophies.     |  |  |  |  |  |  |  |
| CO-2   | Apply the quality tool like QFD and ISO standards for industries                         |  |  |  |  |  |  |  |
| CO-3   | Implement the TQM tools in industries.                                                   |  |  |  |  |  |  |  |
| CO-4   | Demonstrate knowledge of reliability management principles, techniques and philosophies. |  |  |  |  |  |  |  |
| CO-5   | Demonstrate knowledge of models for reliability engineering.                             |  |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 2   | -   | -   | -   | -   | 1   | -   | 2   | 2   | 2    | 2    | 2    |
| CO-2     | 2   | -   | -   | -   | -   | 1   | -   | 2   | 2   | 2    | 2    | 2    |
| CO-3     | 2   | 2   | -   | -   | -   | 1   | -   | 2   | 2   | 2    | 2    | 2    |
| CO-4     | 2   | -   | -   | -   | -   | 1   | -   | -   | -   | _    | _    | -    |
| CO-5     | 2   | 2   | -   | -   | -   | 1   | -   | -   | -   | -    | -    | -    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | -    | 2    |
| CO-2            | -    | 2    |
| CO-3            | -    | 2    |
| CO-4            | -    | 2    |
| CO-5            | -    | 2    |

| FINITE ELEMENT ANALYSIS |          |              |   |   |       |   |    |           |          |       |         |
|-------------------------|----------|--------------|---|---|-------|---|----|-----------|----------|-------|---------|
| Code                    | Category | Periods/Week |   |   | Total |   |    | Sessional | End Exam | Total | Credits |
|                         |          | L            | Т | P | L     | T | Р  | Marks     | Marks    | Marks |         |
| MEC 324                 | SC       | 1            | - | 2 | 16    | - | 32 | 40        | 60       | 100   | 2       |

Prerequisite: Engineering Mathematics-I&II, Engineering Mechanics, Mechanics of solids.

**Course Objectives:** To introduce the concepts of Mathematical Modeling of Engineering Problems using FEA and to appreciate the use of FEA methodology to a wide range of Engineering Problems.

| Course | Outcomes: At the end of the course the student will be able to:                  |
|--------|----------------------------------------------------------------------------------|
| CO-1   | Analyze nodal displacements, stresses and reactions for one dimensional bar      |
|        | problems.                                                                        |
| CO-2   | Examine nodal displacements, stresses and reactions for plane truss and beam     |
|        | problems.                                                                        |
| CO-3   | Explore iso-paramentric formulation of two dimensional structural problems using |
|        | CST and 4 noded quadrilaterel elements.                                          |
| CO-4   | Investigate thermal analysis of one dimensional steady state Heat transfer       |
|        | problems.                                                                        |
| CO-5   | Evaluate eigen values and eigen vectors and Modal and Harmonic analysis of       |
|        | Stepped bar.                                                                     |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 3   | 3   | 3   | 3   | 3   | -   | -   | -   | 2   | 2    | -    | 2    |
| CO-2     | 3   | 3   | 3   | 3   | 3   | -   | -   | -   | 2   | 2    | -    | 2    |
| CO-3     | 3   | 3   | 3   | 3   | 3   | -   | -   | -   | 2   | 2    | -    | 2    |
| CO-4     | 3   | 3   | 3   | 3   | 3   | -   | -   | -   | 2   | 2    | -    | 2    |
| CO-5     | 3   | 3   | 3   | 3   | 3   | -   | -   | -   | 2   | 2    | -    | 2    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 3    | 3    |
| CO-2            | 3    | 3    |
| CO-3            | 3    | 3    |
| CO-4            | 3    | 3    |
| CO-5            | 3    | 3    |

| SYLL                                                                 | ABUS                                           |
|----------------------------------------------------------------------|------------------------------------------------|
| UNIT - I                                                             | Periods: 4L+8P=12                              |
| INTRODUCTION:                                                        |                                                |
| Introductory Concepts: Introduction to FE.                           | A, Refreshing Stress – Strain –Displacement    |
| Relationship, General FEA Procedure, types                           | of Elements, Applications of FEA in various    |
| fields, Advantages and disadvantages of FEA c                        | over other methods,                            |
| ONE-DIMENSIONAL BAR PROBLEMS:                                        | diaster and Ohene Exactions Desiretion of      |
| Introduction, Finite Element Modelling, Coo                          | rdinates and Shape Functions, Derivation of    |
| Stiffness matrix Treatment of Boundary condi-                        | tions Problems                                 |
| Stimess matrix, meathent of Doundary condi-                          | 10113, 1 10010113.                             |
|                                                                      |                                                |
|                                                                      |                                                |
|                                                                      | Periods: 3L+6P=9                               |
| ANALYSIS OF TRUSSES AND BEAMS:                                       |                                                |
| ANALYSIS OF TRUSSES:                                                 | ent stiffe and motain anglama in Dlang Transas |
| ANALVSIS OF DEAMS.                                                   | ent summess matrix-problems in Plane Trusses.  |
| ANALISIS OF DEANIS;<br>Beams-Introduction-Finite Flement Formulation | on Load vector Boundary conditions Simple      |
| problems on beams subjected to point loads and                       | LIDL                                           |
| problems on beams subjected to point todas and                       |                                                |
| UNIT - III                                                           | Periods: 31.+6P=9                              |
| ANALYSIS OF TWO DIMENSIONAL PRO                                      | DBLEMS:                                        |
| Iso-parametric formulation. Three laws used                          | for developing iso-parametric concept, Iso-    |
| parametric, Sub-parametric and Super-paran                           | netric Elements, convergence requirements,     |
| Finite Element Modelling-Constant-Strain                             | Triangle (CST), Four Noded Quadrilateral       |
| Elements (only rectangular elements), Jacobia                        | n Matrix, Strain-displacement matrix - Simple  |
| problems.                                                            |                                                |
|                                                                      |                                                |
|                                                                      | Derivder 21 + 6D-0                             |
| THERMAL ANALYSIS                                                     | Terrous: 5L+01 -9                              |
| Introduction to Thermal analysis FEA formu                           | lation of One Dimensional Steady State Heat    |
| Transfer $= 1D$ Composite walls 1D Thin unif                         | orm Fins Types of Boundary Conditions used     |
| in Heat transfer <b>D</b> roblems on composite walls                 | and fins                                       |
| in freat transfer – froblems on composite wais                       | s and mis.                                     |
|                                                                      |                                                |
|                                                                      |                                                |
| UNIT - V                                                             | Periods: 3L+6P=9                               |
| DYNAMIC ANALYSIS:                                                    |                                                |
| DYNAMIC ANALYSIS:                                                    |                                                |
| Formulation of finite element model, elem                            | nent consistent and lumped mass matrices,      |
| evaluation of eigen values and eigen vectors, I                      | Modal analysis and Harmonic analysis for one   |
| dimensional two noded stepped bar problems.                          |                                                |
|                                                                      |                                                |
|                                                                      |                                                |

NOTE: Experiments are provided to students to gain skill on practical knowledge using ANSYS APDL Software. These Experiments can be given for assignments (Internal Evaluation Process) not for Mid and Semester Exams

## LIST OF EXPERIMENTS:

1.Consider the stepped bar shown in figure below. Determine the Nodal Displacement, Stress in each element, Reaction forces.



2. Consider the four bar truss shown in figure. For the given data, find Stress in each element, Reaction forces, Nodal displacement. E = 210 GPa, A = 0.1 m<sup>2</sup>.



3. Determine the nodal deflections, reaction forces, and stress for the truss system shown below (E = 200GPa, A = 3250mm2).



4. Compute mid- point Deflections, Slopes and Shear force and bending moment diagrams for the beam shown and find the maximum deflection. Young's modulus of 210 GPa, Poisson's ratio 0.27. I =  $5 * 10^6$  N/mm<sup>2</sup>



5. Draw the shear force and bending moment diagram for the beam shown in figure. Also find maximum deflection and location. The beam is of rectangular cross section with depth 200 mm and width 120 mm. Find maximum bending stress and location.



6. In the plate with a hole under plane stress, find deformed shape of the hole and determine the maximum stress distribution alond A-B (you may use t = 1 mm). E = 210GPa, t = 1 mm, Poisson's ratio = 0.3, Dia of the circle = 10 mm, Analysis assumption – plane stress with thickness is used.



7. The corner angle bracket is shown below. The upper left hand pin-hole is constrained around its entire circumference and a tapered pressure load is applied to the bottom of lower right hand pin-hole. Compute Maximum displacement, Von-Mises stress.



8. For the composite wall idealized by the 1-D model shown in figure below, determine the interface temperatures. For element 1, let  $K1 = 5 \text{ W} / \text{m}^{\circ}\text{C}$ , for element 2,  $K2 = 10 \text{ W} / \text{m}^{\circ}\text{C}$  and for element 3,  $K3 = 15 \text{ W} / \text{m}^{\circ}\text{C}$ . The left end has a constant temperature of 200°C and the right end has a constant temperature of 600°C.



9. Conduct modal analysis to determine natural frequency for the given stepped bar problem.



| 10. C             | Conduct harmonic analysis of a given axial stepped bar. Modulus of elasticity, $E = 2.068$                                       |  |  |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| x 10 <sup>1</sup> | x $10^{11}$ N/m <sup>2</sup> Poisson's ratio $\mu = 0.3$ Density. $\rho = 7830$ kg/m <sup>3</sup> Load: Cyclic Load of 300 KN as |  |  |  |  |  |  |  |  |
| show              | shown Frequency Range: 0-5000 Hz                                                                                                 |  |  |  |  |  |  |  |  |
| 5110 11           | shown requency runger o bood in                                                                                                  |  |  |  |  |  |  |  |  |
|                   | 400 mm <sup>2</sup>                                                                                                              |  |  |  |  |  |  |  |  |
|                   | 200 mm <sup>2</sup> P=300KN                                                                                                      |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                  |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                  |  |  |  |  |  |  |  |  |
|                   | 150 mm 150 mm 300 mm                                                                                                             |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                  |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                  |  |  |  |  |  |  |  |  |
| TEX               | T BOOKS:                                                                                                                         |  |  |  |  |  |  |  |  |
| 1.                | Tirupathi R. Chandrupatla, Ashok D.Belegundu Introduction to Finite Elements in                                                  |  |  |  |  |  |  |  |  |
|                   | Engineering, Fourth edition, Pearson education, 2011.                                                                            |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                  |  |  |  |  |  |  |  |  |
| 2                 | S S Dec The Finite Element Method in Engineering 5th edition Electric publications                                               |  |  |  |  |  |  |  |  |
| ۷.                | S.S.Kao The Finite Element Method in Engineering, 5th edition, Elsevier publications, 2010                                       |  |  |  |  |  |  |  |  |
| 3                 | 2010.<br>Mary Kathryn Thompson ANSVS Machanical ADDI for Finite Element Analysis 1 <sup>st</sup>                                 |  |  |  |  |  |  |  |  |
| 5.                | edition Butterworth-Heinemann                                                                                                    |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                  |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                  |  |  |  |  |  |  |  |  |
| REF               | ERENCE BOOKS:                                                                                                                    |  |  |  |  |  |  |  |  |
| 1.                | JN Reddy <i>An introduction to the Finite Element Method</i> , McGraw Hill Education; 3rd edition, 2005.                         |  |  |  |  |  |  |  |  |
| 2.                | C.S. Krishnamoorthy Finite Element Analysis: Theory and Programming, Tata                                                        |  |  |  |  |  |  |  |  |
|                   | McGraw-Hill Education, 1995.                                                                                                     |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                  |  |  |  |  |  |  |  |  |
| 3.                | S.S. Bhavikatti Finite Element Analysis, New Age International, 2005.                                                            |  |  |  |  |  |  |  |  |
| 4.                | KennethH.Huebner, Donald L. Dewhirst, Douglas E. Smith and TedG. Byrom, The                                                      |  |  |  |  |  |  |  |  |
|                   | Finite Element Method for Engineers, John Wiley & sons (ASIA)PteLtd.                                                             |  |  |  |  |  |  |  |  |
| 5.                | Seshu P, Textbook of Finite Element Analysis, PHI. 2004                                                                          |  |  |  |  |  |  |  |  |
| 6.                | Zeincowicz, The Finite Element Method 4 Vol set, 4th Edition, Elsevier 2007.                                                     |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                  |  |  |  |  |  |  |  |  |
| WEI               | 3 RESOURCES:                                                                                                                     |  |  |  |  |  |  |  |  |
| 1.                | https://onlinecourses.nptel.ac.in/noc16_me02                                                                                     |  |  |  |  |  |  |  |  |
| 2.                | http://www.open.edu/openlearn/science-maths-technology/introduction-finite-element-                                              |  |  |  |  |  |  |  |  |
|                   | analysis/                                                                                                                        |  |  |  |  |  |  |  |  |
| 3                 | https://www.ansys.com/training-center/course-catalog/structures/introduction-to-ansys-                                           |  |  |  |  |  |  |  |  |
|                   | mechanical-apdl                                                                                                                  |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                  |  |  |  |  |  |  |  |  |

| FLUID MECHANICS & HYDRAULIC MACHINERY |          |              |   |       |    |    |                    |          |                |         |   |
|---------------------------------------|----------|--------------|---|-------|----|----|--------------------|----------|----------------|---------|---|
| Code                                  | Category | Periods/Week |   | Total |    |    | Sessional<br>Marka | End Exam | Total<br>Morka | Credits |   |
| MEC 325                               | PC       | 2            | 1 | -     | 32 | 16 | -                  | 40       | 60             | 100     | 3 |
|                                       |          |              |   |       |    |    |                    |          |                |         |   |

Prerequisite: Engineering Mathematics-I, Engineering Mechanics

**Course Objectives:** To acquaint the student with the fundamental & advanced principles of fluid mechanics and their application to any practical problem involving fluids to find a solution and to evaluate the forces exerted by a jet of fluid on vanes of different shapes and further apply this knowledge in the study of hydraulic machinery like turbines, pumps etc.

| Course ( | <b>Dutcomes:</b> At the end of the course the student will be able to:              |
|----------|-------------------------------------------------------------------------------------|
| CO-1     | Calculate the fluid properties and pressure measurement in fluid flow problems and  |
|          | also determine the hydro static forces acting on submerged surfaces of different    |
|          | geometry.                                                                           |
| CO-2     | Identify the type of fluid flow using the fundamentals of fluid kinematics and also |
|          | determine the discharge and reaction forces in closed conduit flow.                 |
| CO-3     | Identify the parameters causing the loss of energy and calculate various losses in  |
|          | fluid flow applications. Determine the force and work done by the water jet when it |
|          | strikes vanes of different shapes.                                                  |
| CO-4     | Analyze the performance of hydraulic turbines.                                      |
| CO-5     | Evaluate the performance of reciprocating and centrifugal pumps.                    |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 2   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO-2     | 2   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO-3     | 2   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO-4     | 2   | 2   | -   | -   | -   | 1   | 1   | -   | -   | -    | -    | -    |
| CO-5     | 2   | 2   | -   | -   | -   | 1   | -   | -   | -   | -    | -    | -    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 1    |      |
| CO-2            | 1    |      |
| CO-3            | 1    |      |
| CO-4            | 1    |      |
| CO-5            | 1    |      |

| SYL                                                                                                                                                                                                                                                                                                                                                                                                           | LABUS                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                      | Periods: 6L+2T=8                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FLUID STATICS:                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Properties of fluids - Fluid Pressure and its m                                                                                                                                                                                                                                                                                                                                                               | easurement - Manometers, Simple manometers,                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Differential manometers. Hydrostatic force                                                                                                                                                                                                                                                                                                                                                                    | s on surfaces-Total Pressure and Centre of                                                                                                                                                                                                                                                                                                                                                                                                                       |
| pressure - Horizontal, Vertical, Inclined and C                                                                                                                                                                                                                                                                                                                                                               | Curved plane surfaces submerged in liquid.                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT - II                                                                                                                                                                                                                                                                                                                                                                                                     | Periods: 6L+4T=10                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FLUID KINEMATICS & DYNAMICS:                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Types of fluid flows - velocity and acceleration                                                                                                                                                                                                                                                                                                                                                              | on - continuity equation - velocity potential and                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stream Function - Flow net. Forces acting or                                                                                                                                                                                                                                                                                                                                                                  | n fluid in motion - Equation of Motion - Euler's                                                                                                                                                                                                                                                                                                                                                                                                                 |
| equation - Bernoulli's equation and its applica                                                                                                                                                                                                                                                                                                                                                               | tions - Venturimeter, Orifice Meter. Momentum                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Equation - Impulse-Momentum equation - Fo                                                                                                                                                                                                                                                                                                                                                                     | rces on pipe bend.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -1······                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                               | Derinder (I + 4T 10                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| UNII - III<br>FI OW THDOLICH DIDES & IMDACT OF                                                                                                                                                                                                                                                                                                                                                                | F IETS .                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Revnolds Experiment - Laws of fluid friction                                                                                                                                                                                                                                                                                                                                                                  | - Darcy weishach equation Major Losses and                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Minor losses - Hydraulic gradient line Total                                                                                                                                                                                                                                                                                                                                                                  | anergy line. Pines in series and Pines in parallel                                                                                                                                                                                                                                                                                                                                                                                                               |
| Equivalent pipe Sinhon Impact of jet on stat                                                                                                                                                                                                                                                                                                                                                                  | ionary surfaces. Impact of jot on moving vanes                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Equivalent pipe, Siphon. Impact of jet on stat                                                                                                                                                                                                                                                                                                                                                                | d Dadial flow                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| impact of jet on series of valies- rangential an                                                                                                                                                                                                                                                                                                                                                              | u Kaulai now.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UNIT - IV                                                                                                                                                                                                                                                                                                                                                                                                     | Periods: 6L+4T=10                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HYDRAULIC TURBINES AND ITS PERI                                                                                                                                                                                                                                                                                                                                                                               | FORMANCE:                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| General layout of hydro power plant, heads<br>turbines. Impulse turbine: Pelton turbine-<br>turbine: Francis turbine-constructional featu<br>Axial flow turbine- Kaplan turbine-constru                                                                                                                                                                                                                       | s and efficiencies of turbines, classification of<br>components, work and efficiencies. Reaction<br>ures, work and efficiencies, draft tube theory,                                                                                                                                                                                                                                                                                                              |
| quantities, Specific speed of turbines, per<br>constant speed and constant efficiency cur<br>turbines.                                                                                                                                                                                                                                                                                                        | actional features, work and efficiencies. Unit<br>formance characteristic curves-constant head,<br>wes, model testing of turbines, Cavitation in                                                                                                                                                                                                                                                                                                                 |
| quantities, Specific speed of turbines, per<br>constant speed and constant efficiency cur<br>turbines.                                                                                                                                                                                                                                                                                                        | Periods: 8L+2T=10                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| quantities, Specific speed of turbines, per<br>constant speed and constant efficiency cur<br>turbines.<br>UNIT - V<br>PUMPS:                                                                                                                                                                                                                                                                                  | Periods: 8L+2T=10                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| quantities, Specific speed of turbines, per<br>constant speed and constant efficiency cur<br>turbines.<br>UNIT - V<br>PUMPS:<br>General: Classification of pumps-positive                                                                                                                                                                                                                                     | actional features, work and efficiencies. Unit         formance characteristic curves-constant head,         ves, model testing of turbines, Cavitation in         Periods: 8L+2T=10         displacement and non-positive displacement.                                                                                                                                                                                                                         |
| quantities, Specific speed of turbines, per<br>constant speed and constant efficiency cur<br>turbines.<br>UNIT - V<br>PUMPS:<br>General: Classification of pumps-positive<br>Reciprocating Pumps: Main parts, Classifi                                                                                                                                                                                        | actional features, work and efficiencies. Unit         formance characteristic curves-constant head,         ves, model testing of turbines, Cavitation in         Periods: 8L+2T=10         displacement and non-positive displacement.         cation, work done by pumps, coefficient of                                                                                                                                                                      |
| quantities, Specific speed of turbines, per<br>constant speed and constant efficiency cur<br>turbines.<br>UNIT - V<br>PUMPS:<br>General: Classification of pumps-positive<br>Reciprocating Pumps: Main parts, Classifi<br>discharge, slip, negative slip, Indicator diagra                                                                                                                                    | actional features, work and efficiencies. Unit         formance characteristic curves-constant head,         wes, model testing of turbines, Cavitation in         Periods: 8L+2T=10         displacement and non-positive displacement.         cation, work done by pumps, coefficient of         am, acceleration head and its effects in suction                                                                                                             |
| quantities, Specific speed of turbines, per<br>constant speed and constant efficiency cur<br>turbines.<br>UNIT - V<br>PUMPS:<br>General: Classification of pumps-positive<br>Reciprocating Pumps: Main parts, Classifi<br>discharge, slip, negative slip, Indicator diagra<br>and delivery pipes effect of friction air vess                                                                                  | actional features, work and efficiencies. Unit         formance characteristic curves-constant head,         ves, model testing of turbines, Cavitation in         Periods: 8L+2T=10         displacement and non-positive displacement.         cation, work done by pumps, coefficient of         am, acceleration head and its effects in suction         sels-construction working functions and effect                                                      |
| quantities, Specific speed of turbines, per<br>constant speed and constant efficiency cur<br>turbines.<br>UNIT - V<br>PUMPS:<br>General: Classification of pumps-positive<br>Reciprocating Pumps: Main parts, Classifi<br>discharge, slip, negative slip, Indicator diagra<br>and delivery pipes, effect of friction, air vess<br>of air vessels on discharge, pressure head                                  | actional features, work and efficiencies. Unit         formance characteristic curves-constant head,         wes, model testing of turbines, Cavitation in         Periods: 8L+2T=10         displacement and non-positive displacement.         cation, work done by pumps, coefficient of         am, acceleration head and its effects in suction         sels-construction, working, functions and effect         work indicator diagram maximum speed and   |
| quantities, Specific speed of turbines, per<br>constant speed and constant efficiency cur<br>turbines.<br>UNIT - V<br>PUMPS:<br>General: Classification of pumps-positive<br>Reciprocating Pumps: Main parts, Classifi<br>discharge, slip, negative slip, Indicator diagra<br>and delivery pipes, effect of friction, air vess<br>of air vessels on discharge, pressure head,<br>work saved against friction  | actional features, work and efficiencies. Unit         formance characteristic curves-constant head,         ves, model testing of turbines, Cavitation in         Periods: 8L+2T=10         displacement and non-positive displacement.         cation, work done by pumps, coefficient of         am, acceleration head and its effects in suction         sels-construction, working, functions and effect         work, indicator diagram, maximum speed and |
| quantities, Specific speed of turbines, per<br>constant speed and constant efficiency cur<br>turbines.<br>UNIT - V<br>PUMPS:<br>General: Classification of pumps-positive<br>Reciprocating Pumps: Main parts, Classifi<br>discharge, slip, negative slip, Indicator diagra<br>and delivery pipes, effect of friction, air vess<br>of air vessels on discharge, pressure head,<br>work saved against friction. | actional features, work and efficiencies. Unit         formance characteristic curves-constant head,         ves, model testing of turbines, Cavitation in         Periods: 8L+2T=10         displacement and non-positive displacement.         cation, work done by pumps, coefficient of         am, acceleration head and its effects in suction         sels-construction, working, functions and effect         work, indicator diagram, maximum speed and |

Speed, multi stage pumps, NPSH, cavitation.

1. Hydraulics and Fluid Mechanics by P.N. Modi &S.M. Seth, 18th ed. 1998,

2. Fluid Mechanics by YunusCengel and Cimbala.

3. Dr.R.K.Bansal ,Fluid Mechanics and Hydraulic machinery 9th edition Laxmi Publications 2017.

## **REFERENCE BOOKS**:

| 1. | Fluid Mechanics and Fluid Power Engineering by Dr. D.S. Kumar, S.K. Kataria&Sons.  |
|----|------------------------------------------------------------------------------------|
| 2. | Fluid Mechanics by V.L. Streeter & E.B. Wylie, 1st SI metric ed. 1981, McGraw Hill |
| 3. |                                                                                    |
| 4. |                                                                                    |

#### WEB RESOURCES:

| 1. | http://www.science-animations.com/fluidmechanics.html      |
|----|------------------------------------------------------------|
| 2. | http://nptel.ac.in/courses/112104117/26                    |
| 3  | http://nptel.ac.in/courses/112104117/33                    |
| 4  | https://iitbmechdamp.wordpress.com/me-203-fluid-mechanics/ |

| <b>DESIGN OF MACHINE ELEMENTS-II</b> |          |              |   |   |       |    |   |           |          |       |         |
|--------------------------------------|----------|--------------|---|---|-------|----|---|-----------|----------|-------|---------|
| Code                                 | Category | Periods/Week |   |   | Total |    |   | Sessional | End Exam | Total | Credits |
|                                      |          | L            | Т | Р | L     | Т  | Р | Marks     | Marks    | Marks | Cicuits |
| MEC 326                              | PC       | 2            | 1 | - | 32    | 16 | - | 40        | 60       | 100   | 3       |

**Prerequisite:** Engineering Mathematics, Engineering Mechanics, Mechanics of solids, Design of Machine Elements-I

**Course Objectives:** The main intent of this course is to enhance creativity in designing of components, analyzing induced stresses in a component based on the type of failure. This is achieved through appropriate material selection and design analysis of components like gears, brakes, clutches, crank shaft, connecting rod etc.

| <b>Course Outcomes:</b> At the end of the course the student will be able to: |                                                                                |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CO-1                                                                          | Design the various types of gears based on static and dynamic loads.           |  |  |  |  |  |  |  |
| CO-2                                                                          | Design the IC engine components subjected to combined loads and frictional     |  |  |  |  |  |  |  |
|                                                                               | clutches.                                                                      |  |  |  |  |  |  |  |
| CO-3                                                                          | Design various types of brakes, crane hooks and wire ropes.                    |  |  |  |  |  |  |  |
| CO-4                                                                          | Design and analyze the life of bearings subjected to static and dynamic loads. |  |  |  |  |  |  |  |
| CO-5                                                                          | Design belt and chain drives for power transmission.                           |  |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 3   | 3   | 3   | -   | -   | -   | -   | 1   | 1   | -    | -    | -    |
| CO-2     | 3   | 3   | 3   | -   | -   | -   | -   | 1   | 1   | -    | -    | -    |
| CO-3     | 3   | 3   | 3   | -   | -   | -   | -   | 1   | 1   | -    | -    | -    |
| CO-4     | 3   | 3   | 3   | -   | -   | -   | -   | 1   | 1   | -    | -    | -    |
| CO-5     | 3   | 3   | 3   | -   | -   | -   | -   | 1   | 1   | -    | -    | -    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 3    | -    |
| CO-2            | 3    | -    |
| CO-3            | 3    | -    |
| CO-4            | 3    | -    |
| CO-5            | 3    | -    |

| SYLLABUS                                                                |                              |  |  |  |  |
|-------------------------------------------------------------------------|------------------------------|--|--|--|--|
| UNIT - I                                                                | Periods: 8L+4T=12            |  |  |  |  |
| GEARS                                                                   |                              |  |  |  |  |
| Classification of gears, terminology of gears, standard tooth syste     | ems. Force analysis, beam    |  |  |  |  |
| strength, wear strength and effective load of spur, helical, bevel      | gears. Force analysis and    |  |  |  |  |
| efficiency of worm gears.                                               |                              |  |  |  |  |
| UNIT-II                                                                 | Periods: 6L+3T=9             |  |  |  |  |
| IC ENGINE PARTS AND FRICTION CLUTCHES                                   |                              |  |  |  |  |
| Classification of I.C. engines, design of cylinder, piston, connecting  | g rod and crank shaft.       |  |  |  |  |
| Types of clutches, torque transmission capacity of single disc,         | multi disc, and cone and     |  |  |  |  |
| centrifugal clutches.                                                   |                              |  |  |  |  |
| UNIT - III                                                              | Periods: 6L+3T=9             |  |  |  |  |
| BRAKES, CRANE HOOK AND WIRE ROPES                                       |                              |  |  |  |  |
| Types of brakes, energy equations, band and block brakes, inter-        | nal expanding shoe brakes    |  |  |  |  |
| and disc brakes.                                                        |                              |  |  |  |  |
| Design of crane hooks with trapezoidal cross-section. Wire rope of      | construction and stresses in |  |  |  |  |
| wire ropes. Design of wire ropes for lifts and winches.                 |                              |  |  |  |  |
| UNIT - IV                                                               | Periods: 6L+3T=9             |  |  |  |  |
| BEARINGS                                                                |                              |  |  |  |  |
| Rolling contact bearings: Types of rolling contact bearings, static     | and dynamic load carrying    |  |  |  |  |
| capacity, equivalent bearing load, load-life relationship and se        | election of bearings from    |  |  |  |  |
| manufacturers catalogue.                                                |                              |  |  |  |  |
| Sliding contact bearings: Basic modes of lubrication, temperature e     | effect on viscosity, hydro   |  |  |  |  |
| static and hydro dynamic bearing design. McKee equations, Rey           | nolds's equation, Raimond    |  |  |  |  |
| and Boyd method.                                                        |                              |  |  |  |  |
| UNIT - V                                                                | Periods: 6L+3T=9             |  |  |  |  |
| BELT AND CHAIN DRIVES                                                   |                              |  |  |  |  |
| Belt drives: - Types of belt drives, geometrical relations, analysis    | of belt tensions, condition  |  |  |  |  |
| for maximum power, design of flat belt drives.                          |                              |  |  |  |  |
| Chain drives: Classification, nomenclature, polygonal effect, po        | wer transmission of chain    |  |  |  |  |
| drive, length of chain drive.                                           |                              |  |  |  |  |
| TEXT BOOKS:                                                             |                              |  |  |  |  |
| 1. V.B.Bhandari, Design of Machine Elements 4th edition, Tata           | McGraw Hill Publishing       |  |  |  |  |
| Co. Ltd., New Delhi, 2016.                                              | _                            |  |  |  |  |
| 2. <i>Design data book</i> , PSG College of technology, Coimbatore,     | 2011.                        |  |  |  |  |
| Note: Design data book is allowed in examinations.                      |                              |  |  |  |  |
| <b>REFERENCE BOOKS</b> :                                                |                              |  |  |  |  |
| 1. R.K. Jain, <i>Machine Design</i> , 9th edition, Khanna Publications. |                              |  |  |  |  |
| 2. Joseph Edward Shigley, <i>Mechanical Engineering design</i> , 8th    | Edition, McGraw Hill         |  |  |  |  |
| Company, 2011.                                                          |                              |  |  |  |  |
| 3. R.L.Norton, <i>Machine design, an integrated approach,</i> 2nd ed    | lition, Pearson Education,   |  |  |  |  |
| 2014.                                                                   |                              |  |  |  |  |
| WEB RESOURCES:                                                          |                              |  |  |  |  |
| 1. https://nptel.ac.in/courses/112/106/112106137/                       |                              |  |  |  |  |
| 2 http://www.mrrtechnical.co.in/#dme2                                   |                              |  |  |  |  |

Γ

| FLUID MECHANICS & HYDRAULIC MACHINERY LAB |          |              |   |   |       |   |    |           |          |       |         |
|-------------------------------------------|----------|--------------|---|---|-------|---|----|-----------|----------|-------|---------|
| Code Categor                              | Category | Periods/Week |   |   | Total |   |    | Sessional | End Exam | Total | Credits |
|                                           | Calegory | L            | Т | Р | L     | Т | Р  | Marks     | Marks    | Marks | Cicuits |
| MEC 327                                   | PC       | -            | - | 3 | -     | - | 48 | 50        | 50       | 100   | 1.5     |

**Prerequisite:** Engineering Mathematics-I &II and Fluid mechanics and Hydraulic Machines.

**Course Objectives:**To provide practical knowledge in verification of principles of fluid flow, measurement of pressure, discharge and velocity of fluid flow, Major and Minor Losses, Performance testing of Hydraulic Turbines and Hydraulic Pumps at constant speed and Head.

| Course | <b>Course Outcomes:</b> At the end of the course the student will be able to:      |  |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CO-1   | Carry out an experiment to verify Bernoulli's theorem.                             |  |  |  |  |  |  |  |
| CO-2   | Demonstrate the calibration of various flow measuring devices.                     |  |  |  |  |  |  |  |
| CO-3   | Calculate the Frictional losses in internal flows through experimentation.         |  |  |  |  |  |  |  |
| CO-4   | Determine the co-efficient of impact of jet of water on a fixed flat/curved plate. |  |  |  |  |  |  |  |
| CO-5   | Carry out an experiment to study performance curves of various hydraulic pumps     |  |  |  |  |  |  |  |
|        | and turbines at different operating condition.                                     |  |  |  |  |  |  |  |

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1     | 3   | 2   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-2     | 3   | 2   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-3     | 3   | 2   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-4     | 3   | 2   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-5     | 3   | 2   | -   | 2   | -   | -   | -   | 3   | -   | 3    | -    | 2    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 2    | 1    |
| CO-2            | 2    | 1    |
| CO-3            | 2    | 1    |
| CO-4            | 2    | 1    |
| CO-5            | 2    | 1    |

CO- Course Outcome; PO- Program Outcome; PSO-Program Specific Outcome; Level- 1: Low, 2: Medium, 3: High

#### Department of Mechanical Engineering, ANITS.

| SYLLABUS                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| LIST OF EXPERIMENTS(any nine) Periods: 3practicals/week                                                                                   |
| 1. Verification of Bernoulli's theorem                                                                                                    |
| 2. Determination of coefficient of discharge of                                                                                           |
| a. Rectangular notch (or)                                                                                                                 |
| b. Triangular notch                                                                                                                       |
| 3. Determination of coefficient of discharge of                                                                                           |
| a. Orifice (or)                                                                                                                           |
| b. Mouthpiece                                                                                                                             |
| 4. Calibration of flow meters                                                                                                             |
| a. Venturimeter and                                                                                                                       |
| b. Orificemeter.                                                                                                                          |
| 5. To demonstrate and study different flow regimes using Reynold's experimental setup.                                                    |
| 6. To determine the head losses for flow through pipes and further obtain friction factor.                                                |
| 7. Impact of jet on a                                                                                                                     |
| a. Flat vane (or)                                                                                                                         |
| b. Curved vane                                                                                                                            |
| 8. To draw the performance characteristic curves                                                                                          |
| for                                                                                                                                       |
| a. Pelton turbine and                                                                                                                     |
| b. Francis turbine                                                                                                                        |
| 9. To draw the performance characteristic curves for Centrifugal pump.                                                                    |
| 10. To draw the performance characteristic curves for reciprocating pump.                                                                 |
| TEXT BOOKS:                                                                                                                               |
| I     R K Bansal Fluid mechanics & hydraulic Machines I akhemi publication                                                                |
| 2 R S Khurmi <i>Fluid mechanics&amp; hydraulic Machines</i> S chand & Co I td                                                             |
|                                                                                                                                           |
| DEFEDENCE DOOKS                                                                                                                           |
| <b>KEFERENCE BOOKS</b> :         1       Dr. D.S. Kumar, Fundamentals of fluid machanias, kotson pub, house                               |
| D. D.S. Kumai, Fundamentals of fluid mechanics, Retson pub. house     Ch Ratnam & K Arun vikram Eluid Machanics and Machinery 2nd ravised |
| 2. Ch. Ratham & R. Arun Vikian, Finin Mechanics and Machinery, 210 Ievised                                                                |
|                                                                                                                                           |
| WEB RESOURCES:                                                                                                                            |
| 1 https://fm-nitk vlabs ac in/                                                                                                            |
|                                                                                                                                           |
| 2. Inttps://www.iitk.ac.in/me/Iluid-mechanics-laboratory                                                                                  |

## COMPUTER AIDED DESIGN & MANUFACTURING LAB

| Code    | Category | Periods/Week |   |   | Total |   |    | Sessional | End Exam | Total | tal Credits |  |
|---------|----------|--------------|---|---|-------|---|----|-----------|----------|-------|-------------|--|
| Code    | Category | L            | Т | Р | L     | Т | Р  | Marks     | Marks    | Marks | Cicuits     |  |
| MEC 328 | SC       | 1            | - | 3 | 16    | Ι | 48 | 50        | 50       | 100   | 2.5         |  |

**Prerequisite:** Mechanics of Solids, Manufacturing Processes, Metal Cutting, Machine tools and Metrology, Computer Aided Geometric Modeling.

#### **Course Objectives:**

- **A**) The course is designed to impart hands-on-training on using ANSYS Workbench for analyzing and developing solutions for structural and thermal problems.
- **B**) The course is intended to impart programming skills on CNC-Turning & Milling and hands-on-exposure on CNC-Turning operations & 3D-Printing.
- C) The course gives an orientation on advanced manufacturing systems.

| Course | Outcomes: At the end of the course, the student will be able to:                  |
|--------|-----------------------------------------------------------------------------------|
| CO-1   | Expound the layout and features of ANSYS-Workbench, import / create geometry      |
|        | and customize meshing controls for generating mesh for a diverse set of           |
|        | components and their assemblies.                                                  |
| CO-2   | Perform static structural analysis of beams, frames, 2-D & 3-D bodies and modal   |
|        | analysis using ANSYS-Workbench and further interpret the results.                 |
| CO-3   | Simulate heat transfer problems to evaluate the heat transfer parameters, thermal |
|        | stresses and further solve axi-symmetric problems using ANSYS-Workbench.          |
| CO-4   | Develop programs for turning and milling operations on CNC Machines and further   |
|        | manufacture a component on CNC turning Machine and 3D Printing.                   |
| CO-5   | Distinguish advanced manufacturing systems and develop program for simple robot   |
|        | operations(Pick & Place).                                                         |

| PO   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO   |     |     |     |     |     |     |     |     |     |      |      |      |
| CO-1 | 3   | 3   | 3   | 3   | 3   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-2 | 3   | 3   | 3   | 3   | 3   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-3 | 3   | 3   | 3   | 3   | 3   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-4 | 3   | 3   | 3   | 2   | 3   | -   | -   | 3   | -   | 3    | -    | 2    |
| CO-5 | 2   | 2   | -   | _   | 2   | _   | -   | 3   | -   | 3    | -    | 2    |

| Course Outcomes | PSO1 | PSO2 |
|-----------------|------|------|
| CO-1            | 3    | 3    |
| CO-2            | 3    | 3    |
| CO-3            | 3    | 3    |
| CO-4            | 3    | 3    |
| CO-5            | 2    | 2    |

| <u>SYLLABUS</u><br>Deviades 1T+2D_4/Week                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module I: Finite Floment Analysis using Ansys Workbanch 14.5                                                                                                                                                                                                                                           |
| Week 1: Introduction to ANSYS workbench, System Requirements, Layout and features:<br>Analysis Systems, Component Systems, Custom Systems and Design Exploration Tool box.<br>Project schematic window. Unit systems in workbench. Components of an Analysis system.                                   |
| Exercise: 1- Introduction to workbench layout.                                                                                                                                                                                                                                                         |
| <b>Week 2:</b> Introduction to Engineering data workspace, Selection of Engineering materials, Creating and adding new material to data workspace. Importing CAD geometry, Creating Simple geometry in geometric modular.                                                                              |
| Exercise: 2 – Selecting the material from the Workbench Engineering material library<br>Exercise: 3 – Adding new material to the Workbench Engineering material library<br>Exercise: 4 - Creating a simple extruded fins in Geometrical Modular                                                        |
| <b>Week 3:</b> Generating Mesh, Refining the Mesh, Local Mesh controls, Generating Mesh for assembly components, contact regions.                                                                                                                                                                      |
| Exercise: 5- Generate the Mesh of the component using various control parameters<br>Exercise: 6- Generate mesh of an assembly component and define contact regions                                                                                                                                     |
| Week 4: Static Structural Analysis: Component systems, Pre-processing: Meshing, Analysis setting, Boundary conditions-supports, loads; Solution: Setting up the output parameters-<br>stress, strain, deformations; Post Processing: Reviewing results and Generating report. (Trusses, beams, frames) |
| Exercise: 7 – Static Structural Analysis on planar truss problem.                                                                                                                                                                                                                                      |
| Week 5: Static Structural Analysis of 2-D problems(plane stress & plane strain)                                                                                                                                                                                                                        |
| Exercise: 8 - Static Structural Analysis on 2-D Wrench                                                                                                                                                                                                                                                 |
| Exercise: 9 - Static Structural Analysis on 2-D Bracket (Home Assignment)                                                                                                                                                                                                                              |
| <b>Week 6:</b> An axisymmetric geometry with axisymmetric loads and support (2-D model) to predict the deformation and stresses in the structure.                                                                                                                                                      |
| Exercise: 10- Static Structural Analysis on 2-D axisymmetric fountain Structure                                                                                                                                                                                                                        |
| Week 7: A) Static Structural Analysis of 3-D problems and B) Modal Analysis: Natural                                                                                                                                                                                                                   |
| frequencies and vibration modes.                                                                                                                                                                                                                                                                       |
| Exercise: 11- Static Structural Analysis on 3D Base stand assembly                                                                                                                                                                                                                                     |
| Exercise: 12- Modal Analysis on Acoustic Guitar                                                                                                                                                                                                                                                        |
| Week 8: Thermal Analysis: Steady-State & Transient Thermal Analysis, Thermal stress analysis.                                                                                                                                                                                                          |

Exercise: 13 – Steady State Thermal analysis on Fins Exercise: 14 - Transient Thermal analysis on Fins

## Module -II: Programming on CNC Turning and Milling using a Simulator and Turning on CNC Machine

**Week 9:** Introduction, NC machine tools, structure of CNC machine tool, drives, feedback devices, coordinate system, preparatory functions, miscellaneous functions. Program number, motion commands.

Exercise : 15- Introduction to simulation software and its layout.

Week 10: CNC Turning: Canned cycles- Rough turning and Facing along with finishing cycle.

Exercise: 16- Rough turning on CNC Turning Machine

Exercise: 17- Facing and finishing on CNC Turning Machine

Week 11: CNC Turning: Canned cycles – Screw thread and peck drilling cycle.

Exercise: 18- Simulation of Screw thread on CNC Turning

Exercise: 19- Simulation of peck drilling cycle on CNC Turning

Week 12: CNC Milling: 2D contour and pocket milling.

Exercise: 20- Simulation of 2D contour on CNC milling

Exercise: 21- Simulation of 2D pocket on CNC milling

Week 13: CNC Milling: 2D contour and pocket milling with tool length and radius compensation.

Exercise: 22- Simulation of 2D contour on CNC milling(Tool length & radius compensation) Exercise: 23- Simulation of 2D pocket on CNC milling(Tool length & radius compensation)

### Module -III: 3D- Printing

**Week 14:** Introduction to 3D printing , Fused Filament Fabrication (FFF), 3D Model Preparation for print, Printing parameters, Materials for FFF.

Exercise: 24- 3D Printing of hexagonal bolt and nut

Module -IV: Advanced Manufacturing Systems

**Week 15:** Group Technology(GT), flexible Manufacturing Systems (FMS), Computer Aided Process Planning (CAPP), Computer Aided Inspection and Quality Control. Computer Aided Material Handling.

Demonstration of 6-Axis Material handling Robot.

Module – V: Demonstrating Simulations of Manufacturing processes by Hyper Works Modules

**Week 16:** Inspire Cast- casting simulation, Inspire Form – Forming simulation, Inspire Extrude- extrusion simulation, and other Hyper Works modules

### **REFERENCE BOOKS**:

| 1. | Dr. Xiaolin Chen, Dr. Yijun Liu, "Finite Element Modeling and Simulation with ANSYS                 |
|----|-----------------------------------------------------------------------------------------------------|
|    | <i>Workbench</i> ", 2 <sup>nd</sup> ed., CRC Press Taylor & Francis Group, ISBN-13: 978-1-1384-8629 |
| 2. | M.D. Groover & E.W. Zimmer, CAD/CAM- Computer Aided Design &                                        |
|    | Manufacturing, 1st Edition, PEARSON Publication, 2003.                                              |
| 3. | Computer Aided Design & Manufacturing Lab Manual.                                                   |