IV- Year R20 Curriculum & Syllabus

											-	
Course Code	Title of the course	Category			Р	eriods			Sessionals	Semester end Exam	Total Marks	Credits
Course Code	The of the course	Category	L	Т	Р	Е	0	Total	Marks	marks		Cicuits
MEC 411	***Open Elective- III/Emerging subject	OE	3	0	0	0	2	5	40	60	100	3
MEC 412	Professional Elective-III	PE	3	0	0	1	2	6	40	60	100	3
MEC 413	Professional Elective-IV	PE	3	0	0	1	3	7	40	60	100	3
MEC 414	Professional Elective-V	PE	3	0	0	1	3	7	40	60	100	3
MEC 415	Heat Transfer	PC	2	1	0	2	4	9	40	60	100	3
MEC 416	Metrology & Mechatronics-Lab	PC	0	0	3	0	1	4	50	50	100	1.5
MEC 417	Heat Transfer-Lab	PC	0	0	3	0	1	4	50	50	100	1.5
MEC 418	****Industrial Training-II	PR	0	0	0	0	0	0		100	100	2
MEC 419	Project Phase-I	PR	0	0	4	0	4	8		100	100	2
MEC4110	Automotive Engineering SC		2	0	0	2	4	10	40	60	100	2
Total					10	7	24	60	340	660	1000	24

IV-YEAR-I-SEMESTER

IV-YEAR-II-SEMESTER

Course Code	Title	of the course	Cata				Р	eriods			Sessionals	Semester	Total	Cradita
Course Code	1 lue	of the course	Cateş	gory	L	Т	Р	Е	0	Total	Marks	marks	Marks	Credits
MEC 421	***Op IV/Eme	en Elective- erging subject	0]	E	3	0	0	0	2	5	40	60	100	3
MEC 422	Proj II/Indus	ect Phase- trial Internship	PI	R	0	0	16	0	16	32	100	100	200	8
	1	Total			3	0	16	0	18	37	140	160	300	11
Production Plann Professional Elective-I & Control			ning	Gas Turbines & Jet Proplusions						Automa manufa	ation in cturing	Non-Des Test	structive	
Refrigeration &		c o	Power plant Engineering				nσ	Nano	Fechnology	Quality	& Reliat	oility		
Professiona	l Elective- I	Mechanical Measurements	ð	Computatinal Fluid dynamics				Condition monitoring		Indust	rial tribo	ology		
Professiona	Professional Elective- IV Non-Conventional EnergySources		1	Managerial Economics & Financial Accountancy				s	Uncon machin	ventional e process	Artifici	alintelli	gence	
Professional Elective-V Operations Res		Operations Resea	arch		Alt	erna	te fue	els		Advanced mechanics of materials		Produ Man	Product Design& Manufacturing	
Humanities	Electives	Industrial Engineering		Sta	Stastical Quality Control		ol	Enterprenuership development		Suppy cl manager	Suppy chain management			

Note: Open electives-I & II are offered by other departments. The CSE/IT departments are requested to offer PYTHON-programming & Data structures as open electives.

Note:In Open electives-III & IV/Emerging subjects -only emerging subjects will be offered by the parent department. The subjects could be Mechatronics, Robotics, Additive manufacturing, Condition monitoring etc. (will be decided by the department)

	ADDITIVE MANUFACTURING(AM)							
Code	Category		Period	ls	Sessional	End Exam	Total	Credits
		L	Т	Р	Marks	Marks	Marks	
MEC 411A	Emerging	3	0	0	40	60	100	3
	Subject							

Prerequisite: Material Science, Manufacturing process

Course Objectives: To acquaint students with the basics of additive manufacturing technology and various techniques of it. They can define their advantages, limitations and applications in various fields of engineering.

Course	Dutcomes: At the end of the course the student will be able to:
CO-1	Explain additive manufacturing, its working principle, process parameters and can
	identify AM processes for specific application
CO-2	Identify a specific technique for a given application by applying Vat photo polymerization process.
CO-3	Classify various extrusion based and sheet lamination based additive manufacturing processes and categorize these processes for a specific application.
CO-4	Select a Powder Bed Fusion Processes for an engineering application.
CO-5	Apply direct energy deposition processes and identify suitable post-processing for
	the AM product.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3		2						1	1		1
CO-2	3		2						1	1		1
CO-3	3		2		3				1	1		1
CO-4	3		2						1	1		1
CO-5	3		2						1	1		1

Course Outcomes	PSO1	PSO2
CO-1	3	
CO-2	3	
CO-3	3	3
CO-4	3	
CO-5	3	

SYLL	ABUS
UNIT - I	Periods: 9L

INTRODUCTION TO ADDITIVE MANUFACTURING & APPLICATIONS

Development of Additive Manufacturing Technology: Computer-Aided Design Technology, Associated Technologies, Introduction to AM, AM evolution, Distinction between AM & CNC machining, Steps in AM, Classification of AM processes, Advantages of AM and Types of materials for AM.

Applications for Additive Manufacture: Introduction, The use of AM to Support Medical Applications, Aerospace and Automotive Applications.

UNIT - IIPeriods: 9LVAT PHOTO POLYMERIZATION PROCESSES & JETTING PROCESSES

VAT Photo polymerization Processes: Stereolithography (SL), Materials, SL resin curing process, SL scan patterns, Micro-stereolithography, Mask Projection Processes, Two-Photon vat photopolymerization, Process Benefits and Drawbacks, Applications of Vat Photopolymerization.

Material and Binder Jetting: Evolution, Materials, Material Processing Fundamentals, Material Jetting Machines, Process Benefits and drawbacks, binding materials and systems.

UNIT - III	Periods: 12L
EXTRUSION-BASED AND SHEET LAMINA	ATION PROCESSES

Extrusion Based AM Processes: Fused Deposition Modelling (FDM), Principles, Materials, Process Modelling, Benefits and Drawbacks, Applications of Extrusion-Based Processes.

Sheet Lamination AM Processes: Bonding Mechanisms, Materials, Laminated Object Manufacturing (LOM), Ultrasonic Consolidation (UC), Gluing, Thermal bonding, LOM and UC applications.

Case study (for internal evaluation): Preparation of hexagonal nut on extrusion based 3d Printer

UNIT - IV	Periods: 9L
POWDER BED FUSION PROCESSES	

Powder Bed Fusion Processes : Selective laser Sintering (SLS), Materials, Powder fusion mechanism and powder handling, Process Modelling, SLS Metal and ceramic part creation, Electron Beam melting (EBM), Process, Benefits and Drawbacks, Applications of Powder Bed Fusion Processes.

UNI	T - V	Periods: 9L
ME	FAL ADDITIVE AND POST PROCESSI	NG TECHNIQUES
Met	al Additive Manufacturing processes:	Process Description, Material Delivery, Laser
Engi	neered Net Shaping (LENS), Direct Metal	Deposition (DMD), Electron Beam Based Metal
Dep	osition, Benefits and drawbacks, Application	ns of Directed Energy Deposition Processes.
Post Accu	Processing of AM Parts: Support Mater aracy Improvement.	ial Removal, Surface Texture Improvement and
	T BOOKS	
	AT BOOKS:	
1.	Additive Manufacturing Technologies: 3 Manufacturing, Ian Gibson, David W Rose	D Printing, Rapid Prototyping, and Direct Digital on, Brent Stucker, 2ndEdition (2015), Springer.
2.	Additive Manufacturing, Amit Bandyopad	hayay, Susmita Bose, 1st edition (2015), CRC
	Press.	
3.	Rapid Prototyping: Laser-based and Oth	er Technologies, Patri K. Venuvinod and Weiyin
	Ma, 2010, Kluwer academic publishers.	
REF	FERENCE BOOKS:	
1.	3D Printing and Additive Manufacturing: I Kah Fai. 4 th Edition (2015), World Scientif	Principles & Applications, Chua Chee Kai, Leong ic publications.
2.	Rapid Manufacturing: The Technologies a	nd Applications of Rapid Prototyping and Rapid
	Tooling, D.T. Pham, S.S. Dimov, 1st editio	on (2001),Springer publication.
3.	Rapid Prototyping: Principles and Application	tions in Manufacturing, Rafiq Noorani, 2006,
	John Wiley & Sons.	
WE	B RESOURCES:	
1.	https://blogs.sw.siemens.com/additive/free	-am-101-introductory-online-3d-printing-class/
2.	https://additivemanufacturing.com/basics/	

IV YEAR - I SEMESTER

ROBOTICS								
Code	Category	-	Period	ls	Sessional	End Exam	Total	Credits
		L	Т	Р	Marks	Marks	Marks	
MEC 411(B)	Emerging Subject	2	1	0	40	60	100	3

Prerequisite: Basic Engineering Mathematics, Kinematics of Machinery, Basic Electrical and electronics engineering, Computer Programming.

Course Objectives: The objective of this course is to impart knowledge about robots for their control and design in various industrial and general applications .

Course	Outcomes: At the end of the course the student will be able to:
CO-1	Explain the anatomy of robots, workspaces, robot types, end effector functions,
	and principles of actuation and drive systems.
CO-2	Apply kinematics, DH parameters, obstacle-aware trajectory planning, and
	control systems for accurate, adaptable, and safe robot motion.
CO-3	Describe various sensors, feedback systems and image processing techniques in
	robot.
CO-4	Apply programming languages to develop robotic systems and control their
	behavior.
CO-5	Comprehend the application of AI and ML concepts for operation of robots

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	1			2				2	2		2
CO-2	3	3	2		2				2	2		2
CO-3	2				2				2	2		2
CO-4	3	2	2		2				2	2		2
CO-5	2	2			2				2	2		2

Course Outcomes	PSO1	PSO2
CO-1	2	
CO-2	3	
CO-3	2	
CO-4	2	3
CO-5	2	

SYLLABUS
UNIT - I Periods: 6L+3T=8
BASICS OF ROBOTICS
Definition and scope of robotics, Historical overview of robotics, Laws of robotics, overview
of robotic systems and components, Robot workspaces and configurations, Types of robots and
their applications, End effectors and grippers for different tasks and selection criteria. Actuation
and drive systems in robot.
(For Internal Evaluation)
Task: Introduction to Robot Analyzer Software
UNIT - II Periods: 8L+4T=13
KINEMATICS AND CONTROL OF ROBOT
Kinematics: Scaling, Rotation and homogenous transformation matrix, Forward kinematics
and inverse kinematics, Denavit Hartenberg (DH) parameters,
Trajectory planning: Trajectory planning and path generation for robot motion- steps in
trajectory planning, Joint Space Techniques, Cartesian Space Techniques.
Robot Control: P,I,D, PD, PI, PID control, adaptive control.
-
(For Internal Evaluation)
Task: Perform the Forward kinematics of a 2-DOF planar robot. 3-DOF anthropomorphic
arm & a 3-DOF wrist and KIIKA KR5 Arc Robot
UNIT - III Periods: 6L+3T=9
SENSORS AND COMPUTER VISION IN ROBOT
Feedback System: Open and closed loop feedback systems.
Robot sensors: Sensor types and characteristics (Range, proximity, vision, force and torque),
Sensor fusion and filtering techniques.
Computer Vision in Robotics: Image processing and feature extraction, Object detection,
tracking, and recognition, Visual servoing and robot vision applications.
(For Internal Evaluation)
Task: Creating Robot Joint Trajectories
UNIT - IV Periods: 6L+3T=9
ROBOTIC PROGRAMMING, SIMULATION AND APPLICATIONS
Programming languages for robotics (C++, Python, ROS), Behavior-based programming and
robot architectures, Robot simulation and visualization tools.
Applications: Robotics at Agriculture, Automotive, Supply Chain, Healthcare, Warehouses -
Applications: Robotics at Agriculture, Automotive, Supply Chain, Healthcare, Warehouses - material Transfer, Material handling, loading and unloading; Processing - spot and continuous

(For Internal Evaluation) Task: Programming of Mobile Robot

UN	IT - V Periods: 6L+3T=9
AI	POWERED ROBOTICS
AI	and Machine Learning for Robotics: Reinforcement learning for robot control, Deep
lear	rning in perception and decision-making,
Ad	vanced Topics in Robotics: Human-robot interaction and collaboration, Mobile robots and
nav	rigation, Swarm robotics and multi-robot systems.
(Fo	r Internal Evaluation)
Tas	sk: Case study on AI robot.
TE	XT BOOKS:
1.	Robert J. Schilling, Fundamentals of Robotics Analysis and Control, PHI Learning,
2.	Francis X. Govers, Artificial Intelligence for Robotics: Build intelligent robots that
	perform human tasks using AI techniques, Pearson Edu.
3.	Groover M P, Industrial Robotics, Pearson Edu.
4.	Mittal R K & Nagrath I J, Robotics and Control, TMH.
5.	Asada and Slow time, Robot Analysis and Intelligence, Wiley Inter-Science.
6.	Peter Norvig & Stuart Russell, Artificial Intelligence: A Modern Approach, Third Edition, By Pearson Education India
7.	Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 201
RE	FERENCE BOOKS:
1.	Fu K S, <i>Robotics</i> , McGraw Hill.
2.	Rich and Knight, Artificial Intelligence, 3rd Edition, Tata McGraw Hill, 2014.
3.	Groover, Industrial Robotics, Technology, Programming and Applications, Tata Mc
WI	EB RESOURCES:
1.	http://ecoursesonline.iasri.res.in/course/view.php?id=82
2.	https://www.robotplatform.com/knowledge/sensors/types_of_robot_sensors.html
3.	https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_robotics.htm
4.	https://www.iiitdmj.ac.in/ict.iiitdmj.ac.in/summer-courses-2020/R-AI/
5.	https://ocw.snu.ac.kr/sites/default/files/NOTE/Chap12_Robot%20programming%20lang
6.	https://www.plyrotech.com/blog/artificial-intelligence-machine-learning-and-

MECHANICAL MEASUREMENTS (Professional Elective-III)								
Code	Category	Periods			Sessional	End Exam	Total	Credits
		L	Т	Р	Marks	Marks	Marks	
MEC 412 (A)	PE	3	0	0	40	60	100	3

Prerequisite: Engineering Mathematics, Thermodynamics, Basic of Electrical and Electronics

Course Objectives: The course focuses on imparting the principles of measurement which includes the working mechanism of various transducers and devices that are in use to measure the important physical variables

Course	utcomes: At the end of the course the student will be able to:								
CO-1	Explain the basic principles & performance characteristics of measurement and also select a suitable displacement measuring instrument for a given application/experimentation.								
CO-2	Explain the basic principles, working, advantages, disadvantages and applications of temperature and pressure measuring devices and select a suitable pressure & temperature measuring instrument for a given application/experimentation.								
CO-3	Elucidate the basic principles, working, advantages, disadvantages and applications of level & flow measuring instruments and also select a suitable instrument for a given application/experimentation								
CO-4	Describe the basic principles, working, advantages, disadvantages and applications of speed, acceleration and vibration, force, torque and power measuring instruments and also select a suitable instrument for a given application/experimentation								
CO-5	Explain the basic principles, working, advantages, disadvantages and applications of stress strain & humidity measuring instruments and also select a suitable instrument for a given application/experimentation.								
PO	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO-1	2	1		1								
CO-2	2	1		1								
CO-3	2	1		1								
CO-4	2	1		1								
CO-5	2	1		1								

Course Outcomes	PSO1	PSO2
CO-1	1	1
CO-2	1	1
CO-3	1	1
CO-4	1	1
CO-5	1	1

SVI I ADUS
<u>SYLLABUS</u> UNIT I Devie des 101
UNII – I Periods: IUL
MEASUREMENT OF DISPLACEMENT
Definition – Basic principles of measurement – Measurement systems, generalized
configuration and functional description of measuring instruments - examples. Static and
Dynamic performance characteristics - sources of errors, Classification and elimination of
errors.
Measurement of Displacement: Theory and construction of various transducers to measure
displacement – Piezo electric Inductive capacitance resistance ionization and Photo
electric transducers Calibration procedures
electric transducers, Canoration procedures
UNIT – II Periods: 10L
MEASUREMENT OF TEMPERATURE & PRESSURE
Measurement of Temperature: Various Principles of measurement-Classification:
Expansion Type: Bimetallic Strip-Liquid in glass Thermometer; Electrical Resistance Type:
Thermistor, Thermocouple, RTD: Radiation Pyrometry: Optical Pyrometer: Changes in
Chamical Phase: Eusible Indicators and Liquid crystals
Chemical Thase. Pusible indicators and Elquid erystais.
Measurement of Pressure: Different principles used- Classification: Manometers Dead
weight pressure gauge Tester (Disten gauge) Dourden pressure gauges Dully medulus
weight pressure gauge. Tester (Fistori gauge), Bourdon pressure gauges, Burk modulus
pressure gauges Bellows – Diaphragm gauges. Low pressure measurement – Thermal
conductivity gauges, ionization pressure gauges, Mcleod pressure gauge.
UNIT – III Periods: 8L
MEASUREMENTS OF LEVEL & FLOW
Measurement of Level: Direct methods - Indirect methods - Capacitive, Radioactive,
Ultrasonic, Magnetic, Cryogenic Fuel level indicators – Bubbler level indicators.

Flow measurement: Rotameter, magnetic, Ultrasonic, Turbine flow meter, Hot - wire anemometer, Laser Doppler Anemometer (LDA)

UNIT – IV

Periods: 10L MEASUREMENTS OF SPEED, ACCELERATION & VIBRATION, FORCE, TORQUE AND POWER

Measurement of Speed: Mechanical Tachometers, Electrical tachometers, Non- contact type-Stroboscope

Measurement of Acceleration and Vibration: Different simple instruments - Principles of Seismic instruments - Vibrometer and accelerometer using this principle- Piezo electric accelerometer.

Measurement of Force, Torque and Power- Elastic force meters, load cells, Torsion meters, Dynamometers.

UNI	IT – V	Periods: 10L					
ME	ASUREMENT OF STRESS-STRAIN &	HUMIDITY					
Stre	ess-Strain measurements: Various types of	of stress and strain measurements -Selection					
and	installation of metallic strain gauges- elect	rical strain gauge – gauge factor – method of					
usag	ge of resistance strain gauge for bending co	ompressive and tensile strains – Temperature					
com	pensation techniques, Use of strain gauges	for measuring torque, Strain gauge Rosettes.					
Mea	asurement of Humidity: Moisture conter	t of gases, Sling Psychrometer, Absorption					
Psyc	chrometer, Dew point meter.						
TEX	XT BOOKS:						
1.	Principles of Industrial Instrumentation a	nd Control Systems /Alavala / Cengage					
2.	Mechanical Measurements and Instrumer	ntation & Control/A.K. Sawhney & Puneet					
	Sawhney/Dhanpat Rai & Co						
3.	Instrumentation, Measurement and Analy	sis/ B.C.Nakra and K.K.Choudhary/ Mc					
	Graw Hill.						
REF	FERENCE BOOKS:						
1.	Mechanical Measurements / Sirohi and R	adhakrishna / New Age International					
2.	Measurement Systems: Applications & de	esign / D.S Kumar/McGraw Hill Publishers					
3.	Experimental Methods for Engineers / Ho	olman					
4.	Mechanical and Industrial Measurements / R. K. Jain/ Khanna Publishers.						
5	Instrumentation and Mechanical Measure	ements / A.K. Tayal / Galgotia Publications.					
WE	B RESOURCES:						
1.	http://ecoursesonline.iasri.res.in/course/v	iew.php?id=82					

COMPUTATIONAL FLUID DYNAMICS								
(Professional Elective-III)								
Code	Category	Periods			Sessional	End Exam	Total	Credits
		L	Т	Р	Marks	Marks	Marks	
MEC 412	PE	2	1	0	40	60	100	3

Prerequisite: Mathematics, Fluid Mechanics

Course Objectives: The course is designed to impart the knowledge of numerical techniques and its application to the solution of fluid dynamics and heat transfer problems.

Course	Course Outcomes: At the end of the course, the student will be able to:						
CO-1	Formulate Governing Equations of fluid dynamics and analyze their mathematical behavior.						
CO-2	Apply the Finite Difference and Finite volume methods for solving simple one, two and three dimensional diffusion problems.						
CO-3	Apply Finite volume method for solving steady one dimensional convection diffusion problems.						
CO-4	Apply Finite volume method for flow field analysis.						
CO-5	Solve engineering problems using CFD.						

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	3	2									
CO-2	3	3	2									
CO-3	3	3	2			2						
CO-4	3	3	2									
CO-5	3	3	2									

Course Outcomes	PSO1	PSO2
CO-1	2	
CO-2	2	
CO-3	2	
CO-4	2	
CO-5	2	

	<u>SYLL</u>	ABUS					
UNI	[T - I	Periods: 6L+3T=9					
GO	GOVERNING EQUATIONS AND BOUNDARY CONDITIONS:						
Basi	ics of computational fluid dynamics -	Governing equations of fluid dynamics -					
Con	tinuity, Momentum and Energy equation	ns - Chemical species transport - Physical					
bour	ndary conditions - Time-averaged equation	ons for Turbulent Flow - Turbulent-Kinetic					
Ener	rgy Equations - Mathematical behavior	of PDEs on CFD - Elliptic, Parabolic and					
Нур	erbolic equations.						
	_						
TINIT							
	1 - 11 TTE DIFFEDENCE AND FINITE VOL	Periods: 6L+31=9					
FIN	ITE DIFFERENCE AND FINITE VOL	UME METHODS FOR DIFFUSION:					
Deri	Ivation of finite difference equations – Sin	nple Methods – General Methods for first and					
seco	and order accuracy – Finite volume formu	llation for steady state One, Two and Three -					
dime	ensional diffusion problems –Parabolic e	equations – Explicit and Implicit schemes –					
Exai	mple problems on elliptic and parabolic ed	quations – Use of Finite Difference and Finite					
Volı	ume methods.						
UNI	T - III	Periods: 6L+3T=9					
FIN	ITE VOLUME METHOD FOR CONV	ECTION AND DIFFUSION:					
Stea	dy one-dimensional convection and diffu	sion - Central, upwind differencing schemes					
prop	perties of discretization schemes - Cons	ervativeness, Boundedness, Transportiveness,					
Hyb	rid, Power-law, QUICK Schemes.						
UNI	T - IV	Periods: 6L+3T=9					
FLC	DW FIELD ANALYSIS:						
Finit	te volume methods -Representation of the	pressure gradient term and continuity equation					
– St	aggered grid – Momentum equations –						
Corr	- Staggered grid - Momentum equations - Fressure and velocity corrections - Fressure						
Correction equation, Shvir LE algorithm and its variants – F150 Algorithms.							
	rection equation, SIMPLE algorithm and its	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms.					
UNI	rection equation, SIMPLE algorithm and its	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms.					
UNI	rection equation, SIMPLE algorithm and its	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12					
UNI Tur	Trection equation, SIMPLE algorithm and its T-V bulence Modeling:	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12 ortant_features_of_turbulent_flow_General					
UNI Tur Intro	The section equation, SIMPLE algorithm and its IT - V bulence Modeling: poduction to Turbulence Modeling, Imp partice of turbulent quantities. Paymolds	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12 ortant features of turbulent flow, General everage Navier stekes (PANS) equation k s					
UNI Turi Intro Prop	The section equation, SIMPLE algorithm and its The section equation, SIMPLE algorithm and its The section of the section of	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12 ortant features of turbulent flow, General average Navier stokes (RANS) equation, k-ε					
UNI Tur Intro Prop mod	rection equation, SIMPLE algorithm and its IT - V bulence Modeling: oduction to Turbulence Modeling, Imp perties of turbulent quantities, Reynolds lel, k-ω model Necessity of turbulence mod	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12 ortant features of turbulent flow, General average Navier stokes (RANS) equation, k-ε leling.					
UNI Tur Intro Prop mod	rection equation, SIMPLE algorithm and its T - V bulence Modeling: oduction to Turbulence Modeling, Imp perties of turbulent quantities, Reynolds lel, k-ω model Necessity of turbulence mod	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12 ortant features of turbulent flow, General average Navier stokes (RANS) equation, k-ε leling.					
UNI Tur Intro Prop mod	rection equation, SIMPLE algorithm and its IT - V bulence Modeling: oduction to Turbulence Modeling, Imp perties of turbulent quantities, Reynolds lel, k-ω model Necessity of turbulence mod	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12 ortant features of turbulent flow, General average Navier stokes (RANS) equation, k-ε leling.					
UNI Tur Intro Prop mod	rection equation, SIMPLE algorithm and its T - V bulence Modeling: oduction to Turbulence Modeling, Imp perties of turbulent quantities, Reynolds lel, k-ω model Necessity of turbulence mode KT BOOKS:	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12 ortant features of turbulent flow, General average Navier stokes (RANS) equation, k-ε leling.					
UNI Tur Intro Prop mod TEX	rection equation, SIMPLE algorithm and its IT - V bulence Modeling: oduction to Turbulence Modeling, Imp perties of turbulent quantities, Reynolds lel, k-ω model Necessity of turbulence models KT BOOKS: Patankar, S.V. "Numerical Heat Transfer	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12 ortant features of turbulent flow, General average Navier stokes (RANS) equation, k-ε leling. and Fluid Flow", Hemisphere Publishing					
UNI Tur Intro Prop mod TEX 1.	rection equation, SIMPLE algorithm and its T - V bulence Modeling: oduction to Turbulence Modeling, Imp perties of turbulent quantities, Reynolds lel, k-ω model Necessity of turbulence mode KT BOOKS: Patankar, S.V. "Numerical Heat Transfer Corporation, 2004.	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12 ortant features of turbulent flow, General average Navier stokes (RANS) equation, k-ε leling. and Fluid Flow", Hemisphere Publishing					
UNI Tur Intro Prop mod TEX 1.	rection equation, SIMPLE algorithm and its IT - V bulence Modeling: oduction to Turbulence Modeling, Imp perties of turbulent quantities, Reynolds lel, k-ω model Necessity of turbulence mod KT BOOKS: Patankar, S.V. "Numerical Heat Transfer Corporation, 2004. Versteeg, H.K., and Malalasekera, W., "A	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12 ortant features of turbulent flow, General average Navier stokes (RANS) equation, k-ε leling. and Fluid Flow", Hemisphere Publishing An Introduction to Computational Fluid					
UNI Turi Intro Prop mod TEX 1.	rection equation, SIMPLE algorithm and its T - V bulence Modeling: oduction to Turbulence Modeling, Imp perties of turbulent quantities, Reynolds lel, k-ω model Necessity of turbulence mod KT BOOKS: Patankar, S.V. "Numerical Heat Transfer Corporation, 2004. Versteeg, H.K., and Malalasekera, W., "A Dynamics: The finite volume Method", P	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12 ortant features of turbulent flow, General average Navier stokes (RANS) equation, k-ε leling. and Fluid Flow", Hemisphere Publishing An Introduction to Computational Fluid earson Education Ltd.Second Edition – 2007.					
UNI Tur Intro Prop mod TEX 1.	rection equation, SIMPLE algorithm and its T - V bulence Modeling: oduction to Turbulence Modeling, Imp perties of turbulent quantities, Reynolds lel, k-ω model Necessity of turbulence models XT BOOKS: Patankar, S.V. "Numerical Heat Transfer Corporation, 2004. Versteeg, H.K., and Malalasekera, W., "A Dynamics: The finite volume Method", P Chung, T.L. "Computational Eluid Dynamics	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12 ortant features of turbulent flow, General average Navier stokes (RANS) equation, k-ε leling. and Fluid Flow", Hemisphere Publishing and Fluid Flow", Hemisphere Publishing An Introduction to Computational Fluid earson Education Ltd.Second Edition – 2007. pics" Cambridge University Press 2002					
UNI Tur Intro Prop mod TEX 1.	rection equation, SIMPLE algorithm and its IT - V bulence Modeling: oduction to Turbulence Modeling, Imp perties of turbulent quantities, Reynolds lel, k-ω model Necessity of turbulence mod KT BOOKS: Patankar, S.V. "Numerical Heat Transfer Corporation, 2004. Versteeg, H.K., and Malalasekera, W., "A Dynamics: The finite volume Method", P Chung, T.J., "Computational Fluid Dynamics	Pressure and Velocity corrections – Pressure s variants – PISO Algorithms. Periods: 8L+4T=12 ortant features of turbulent flow, General average Navier stokes (RANS) equation, k-ε leling. and Fluid Flow", Hemisphere Publishing An Introduction to Computational Fluid earson Education Ltd.Second Edition – 2007. nics", Cambridge University, Press, 2002.					

REFERENCE BOOKS:

1.	Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer", Tata McGraw
	Hill Publishing Company Ltd., 1998.
2.	Prodip Niyogi, Chakrabarty, S.K., Laha, M.K. "Introduction to Computational Fluid
	Dynamics", Pearson Education, 2005.
3.	Anil W. Date, "Introduction to Computational Fluid Dynamics", Cambridge University
	Press, 2005.
WE	B RESOURCES:
1.	https://nptel.ac.in/courses/112105045

CONDITION MONITORING								
(Professional Elective-III)								
Code	Category	Periods			Sessional	End Exam	Total	Credits
		L	Т	Р	Marks	Marks	Marks	
MEC 412 (C)	PE	3	-	-	40	60	100	3

Prerequisite: Engineering Mechanics, Dynamics of Machinery

Course Objectives: To familiarize the students with different types and causes of failure of mechanical components and different condition monitoring techniques available for reactive, preventive and predictive maintenance types.

Course	Course Outcomes: At the end of the course the student will be able to:						
CO-1	Interpret various failures and different maintenance types						
CO-2	Predict the causes of vibration by using vibration monitoring technique						
CO-3	Apply thermography as a tool for condition monitoring and further explain intricacies of it						
CO-4	Describe and analyze wear debris monitoring methods						
CO-5	Comprehend structural health monitoring principle and its applications						

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	3	3	3		2						3
CO-2	3	3	3	3		2						3
CO-3	3	3	3	3		2						3
CO-4	3	3	3	3		2						3
CO-5	3	3	3	3		2						3

Course Outcomes	PSO1	PSO2
CO-1	3	2
CO-2	3	2
CO-3	3	2
CO-4	3	2
CO-5	3	2

<u>SYLLABUS</u>
UNIT - I Periods: 12L
INTRODUCTION ABOUT CONDITION MONITORING
Introduction about Condition monitoring - Definition, phases, purpose and applications of
Condition monitoring, Failure definition, classification of failures, Failure investigation
principles, Failure case studies, Bath tub curve, Failure Mode Effects and Criticality
Analysis (FMECA). Design, manufacturing and assembly causes of failure. Maintenance
types.
UNIT - II Periods: 9L
VIBRATION MONITORING
Different Condition monitoring techniques, Principles of vibration monitoring, Causes of
vibration - Unbalance, Misalignment, Bent shaft, Oil whirl, Bearing defects, Mechanical
looseness, Gear problems, Faults in fluid machines, Vibration analysis, Vibration analyzer,
ISO standards, Case study: Vibration Analysis in Industries.
UNII - III PERIOUS: 9L THEDMOCDADIN
Introduction Thermal imaging devices Ontical averanter Infrared compares Use of ID
Introduction, Therman imaging devices- Optical pyrometer, innated cameras, Use of IK
camera, industrial applications of thermography - Leakage detection, Electrical and
Electronic Component heat generation, Machineries, Applications of thermography in
condition monitoring, Case study : Applying Thermography in Industries.
UNIT - IV Periods: 9L
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography,
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries.
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries.
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM)
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Periods: 9L Definition of Damage, Definition, Principle, Benefits and Applications of SHM, Four
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Definition of Damage, Definition, Principle, Benefits and Applications of SHM, Four stages in SHM - Operational evaluation. Data acquisition, normalization and cleansing.
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Definition of Damage, Definition, Principle, Benefits and Applications of SHM, Four stages in SHM - Operational evaluation, Data acquisition, normalization and cleansing, Feature extraction and data compression. Statistical model development. Sensor
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Definition of Damage, Definition, Principle, Benefits and Applications of SHM, Four stages in SHM - Operational evaluation, Data acquisition, normalization and cleansing, Feature extraction and data compression, Statistical model development, Sensor technology, Piezoelectric sensors, Case studies on different structures.
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Definition of Damage, Definition, Principle, Benefits and Applications of SHM, Four stages in SHM - Operational evaluation, Data acquisition, normalization and cleansing, Feature extraction and data compression, Statistical model development, Sensor technology, Piezoelectric sensors, Case studies on different structures.
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Definition of Damage, Definition, Principle, Benefits and Applications of SHM, Four stages in SHM - Operational evaluation, Data acquisition, normalization and cleansing, Feature extraction and data compression, Statistical model development, Sensor technology, Piezoelectric sensors, Case studies on different structures. TEXT BOOKS:
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Definition of Damage, Definition, Principle, Benefits and Applications of SHM, Four stages in SHM - Operational evaluation, Data acquisition, normalization and cleansing, Feature extraction and data compression, Statistical model development, Sensor technology, Piezoelectric sensors, Case studies on different structures. TEXT BOOKS: 1. 1. Amiya R.Mohanty 'Machinery condition monitoring: Principles and Practices' , CRC
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Periods: 9L Definition of Damage, Definition, Principle, Benefits and Applications of SHM, Four stages in SHM - Operational evaluation, Data acquisition, normalization and cleansing, Feature extraction and data compression, Statistical model development, Sensor technology, Piezoelectric sensors, Case studies on different structures. TEXT BOOKS: 1. 1. Amiya R.Mohanty 'Machinery condition monitoring: Principles and Practices', CRC Press , Taylor and Francis Group publisher (2019)
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Periods: 9L Definition of Damage, Definition, Principle, Benefits and Applications of SHM, Four stages in SHM - Operational evaluation, Data acquisition, normalization and cleansing, Feature extraction and data compression, Statistical model development, Sensor technology, Piezoelectric sensors, Case studies on different structures. TEXT BOOKS: 1. 1. Amiya R.Mohanty 'Machinery condition monitoring: Principles and Practices' , CRC Press , Taylor and Francis Group publisher (2019) 2. R.A. Collacott 'Mechanical Fault Diagnosis and Condition Monitoring', Chapman
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Periods: 9L Definition of Damage, Definition, Principle, Benefits and Applications of SHM, Four stages in SHM - Operational evaluation, Data acquisition, normalization and cleansing, Feature extraction and data compression, Statistical model development, Sensor technology, Piezoelectric sensors, Case studies on different structures. TEXT BOOKS: 1. 1. Amiya R.Mohanty 'Machinery condition monitoring: Principles and Practices' , CRC Press , Taylor and Francis Group publisher (2019) 2. R.A. Collacott 'Mechanical Fault Diagnosis and Condition Monitoring', Chapman and Hall London (2020)
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Periods: 9L Definition of Damage, Definition, Principle, Benefits and Applications of SHM, Four stages in SHM - Operational evaluation, Data acquisition, normalization and cleansing, Feature extraction and data compression, Statistical model development, Sensor technology, Piezoelectric sensors, Case studies on different structures. TEXT BOOKS: 1. Amiya R.Mohanty 'Machinery condition monitoring: Principles and Practices' , CRC Press , Taylor and Francis Group publisher (2019) 2. R.A. Collacott 'Mechanical Fault Diagnosis and Condition Monitoring', Chapman and Hall London (2020)
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Periods: 9L Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Definition of Damage, Definition, Principle, Benefits and Applications of SHM, Four stages in SHM - Operational evaluation, Data acquisition, normalization and cleansing, Feature extraction and data compression, Statistical model development, Sensor technology, Piezoelectric sensors, Case studies on different structures. TEXT BOOKS: 1. 1. Amiya R.Mohanty 'Machinery condition monitoring: Principles and Practices' , CRC Press , Taylor and Francis Group publisher (2019) 2. R.A. Collacott 'Mechanical Fault Diagnosis and Condition Monitoring', Chapman and Hall London (2020) 3 Daniel Balageas, Claus-Peter Fritzen, Alfredo Guemes 'Structural health monitoring'
UNIT - IV Periods: 9L WEAR DEBRIS MONITORING Introduction, Mechanisms of wear, Benefits of wear debris analysis, Detection of wear particles – Spectroscopy, Spectrometric Oil Analysis Procedure (SOAP), Ferrography, Particle count, Common wear materials, Oil sampling technique, Oil analysis, Limits of oil analysis, Case study: Oil Analysis in Industries. UNIT - V Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Periods: 9L STRUCTURAL HEALTH MONITORING (SHM) Definition of Damage, Definition, Principle, Benefits and Applications of SHM, Four stages in SHM - Operational evaluation, Data acquisition, normalization and cleansing, Feature extraction and data compression, Statistical model development, Sensor technology, Piezoelectric sensors, Case studies on different structures. TEXT BOOKS: 1. 1. Amiya R.Mohanty 'Machinery condition monitoring: Principles and Practices' , CRC Press , Taylor and Francis Group publisher (2019) 2. R.A. Collacott 'Mechanical Fault Diagnosis and Condition Monitoring', Chapman and Hall London (2020) 3 Daniel Balageas, Claus-Peter Fritzen, Alfredo Guemes 'Structural health monitoring' , John Wiley Publisher (2019)

REI	FERENCE BOOKS:
1.	Cornelius scheffer, Paresh Girdhar Practical Machinery vibration analysis and
	Predictive Maintenance, Newnes(Elsevier) (2020)
2.	Alan Davies, Hand book of condition monitoring techniques and Methodology,
	Chapman and Hall Publisher(2021)
3.	J.S.Rao, Vibratory condition monitoring of Machines, Narosa Publishing
	House(2019)
WE	B RESOURCES:
1.	http://nptel.ac.in/courses/112105048/33
2.	http://nptel.ac.in/courses/112103112/40

INDUSTRIAL TRIBOLOGY								
(PROFESSIONAL ELECTIVE-III)								
Code	Category	Periods			Sessional	End Exam Total		Credits
	category	L	Т	Р	Marks	Marks	Marks	Ciedits
MEC 412(D)	PE	2	1	0	40	60	100	3

Prerequisite: Fluid Mechanics & Hydraulic Machinery, Design of machine Elements I & II

Course Objectives:

- To provide the knowledge and importance of Tribology in Design, friction, wear and lubrication aspects of machine components.
- To select proper grade lubricant for specific application and understand the behavior of tribological components.

Course	Course Outcomes: At the end of the course the student will be able to:						
CO-1	Calculate the viscosity of fluids and analyze the properties of surfaces						
CO-2	Determine the friction and wear of metals and non-metals						
CO-3	Analyze the behavior of hydrostatic step bearings.						
CO-4	Analyze the hydrodynamic behavior of journal bearings						
CO-5	Select proper materials for bearings and Analyze the behavior of coatings on surfaces						

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	2	-	-	-	-	-	-	2	2	-	1
CO-2	3	2	-	-	-	-	-	-	2	2	-	1
CO-3	3	2	-	-	-	-	-	-	2	2	-	1
CO-4	3	2	-	-	-	-	-	-	2	2	-	1
CO-5	3	2	-	-	-	-	-	-	2	2	-	1

Course Outcomes	PSO1	PSO2
CO-1	3	-
CO-2	3	-
CO-3	3	-
CO-4	3	-
CO-5	3	-

<u>SYLLABUS</u>							
UNIT – I	Periods: 6L+3T=9						
INTRODUCTION TO TRIBOLOGY							

Tribology in design, tribology in industry Viscosity, flow of fluids, viscosity and its variation absolute and kinematic viscosity, temperature variation, viscosity index determination of viscosity, different viscometers, Tribological considerations Nature of surfaces and their contact; Physic mechanical properties of surface layer, Geometrical properties of surfaces, methods of studying surfaces; Study of contact of smoothly and rough surfaces

UNIT – II Periods: 6L+3T=9 FRICTION AND WEAR

Role of friction and laws of static friction, causes of friction, theories of friction, Laws of rolling friction; Friction of metals and non-metals; Friction measurements. Definition of wear, mechanism of wear, types and measurement of wear, friction affecting wear, Theories of wear; Wear of metals and non-metals.

Types of lubricants and their industrial uses; SAE classification, recycling, disposal of oils, properties of liquid and grease lubricants; lubricant additives, general properties and selection

UNIT – III Periods: 6L+3T=9 HYDROSTATIC LUBRICATION

Principle of hydrostatic lubrication, General requirements of bearing materials, types of bearing materials., Hydrostatic step bearing, application to pivoted pad thrust bearing and other applications, Hydrostatic lifts, hydrostatic squeeze films and its application to journal bearing, optimum design of hydrostatic step bearing

UNIT – IV	Periods: 6L+3T=9
HYDRODYNAMIC THEORY OF LUBRIC	CATION

Principle of hydrodynamic lubrication, Various theories of lubrication, Petroff's equation, Reynold's equation in two dimensions -Effects of side leakage - Reynolds equation in three dimensions, Friction in sliding bearing, hydro dynamic theory applied to journal bearing, minimum oil film thickness, oil whip and whirl, anti –friction bearing, hydrodynamic thrust bearing

UNIT – V	Periods: 8L+4T=12						
SURFACE ENGINEERING AN	SURFACE ENGINEERING AND MATERIALS FOR BEARINGS						
Surface modification, Transforma	tion hardening, surface fusion, Thermo chemical processes,						
surface coatings, Plating and anod	lizing, Materials for rolling elements bearings,						
Materials for fluid film bearings, N	Materials for marginally lubricated and dry bearings.						
TEXT BOOKS:							
1. S K Basu, S N SenGupta and	1 B B Ahuja, Fundamentals of Tribology, Publishers						
2. Sushil Kumar Srivatsava, Tr	ibology in Industry, Publishers S. Chand & Co Ltd ,2004						
3. H.G.Phakatkar and R.R.Gho	rpade, Engineering Tribology, Nirali Publications, 2015						
4. B.C. Majumdar, Introduction	n to Tribology of bearings, Publishers Tata McGraw Hill						
REFERENCE BOOKS :							
1. J Halling, Introduction to Tri	ibology, , Publishers Wykeham Publications Ltd, 1976						
2. Michael J Neale, The Tribolo	ogy Hand Book, Elsevier Publications 2nd Edition, 1995						
3. FT Barwell, Bearing System	s, Principles and Practice, Publishers oxford university						
WEB RESOURCES:							
1. https://nptel.ac.in/courses/11	2102015						
2. https://onlinecourses.nptel.ac	c.in/noc22_me03/preview						

NON-CONVENTIONAL ENERGY SOURCES (PROFESSIONAL ELECTIVE-IV)									
Code	Category	Periods			Sessional	End Exam	Total	Credits	
Code	Category	L	Т	Р	Marks	Marks	Marks	Cicuits	
MEC 413(A)	PE	3	0	0	40	60	100	3	

Prerequisite: Engineering Mechanics, Basic Thermodynamics.

Course Objectives: In the backdrop of depleting fossil fuels, the course is intended to give a overall perspective of the potential of non-conventional energy sources like solar, wind, ocean, geothermal etc. The course also attempts to stress the importance of direct energy conversion systems.

Course	Dutcomes: At the end of the course the student will be able to:
CO-1	Distinguish various renewable energy sources & principles of solar radiation.
CO-2	Classify solar collectors, solar storage systems & demonstrate the various solar
	photovoltaic systems
CO-3	Evaluate the performance characteristics of wind machines and classify the Bio-gas
	plants.
CO-4	Elucidate the working principles of OTEC, tidal power generation & geothermal
	power plants.
CO-5	Illustrate the principle and importance of MHD & Fuel cells.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	1	-	-	-	1	1	-	-	-	-	-
CO-2	2	1	-	-	-	1	1	-	-	-	-	-
CO-3	2	1	-	-	-	1	1	-	-	-	-	-
CO-4	2	1	-	-	-	1	1	-	-	-	-	-
CO-5	2	1	-	-	-	1	1	-	-	-	-	-

Course Outcomes	PSO1	PSO2
CO-1	1	
CO-2	1	
CO-3	1	
CO-4	1	
CO-5	1	

SYLLABUS
UNIT - I Periods: 9L
NON-CONVENTIONAL ENERGY RESOURCES & PRINCIPLES OF SOLAI RADIATION
Non-Conventional Sources of Energy: An overview, Energy Consumption, Details of Energy
usage in each sector in India, Consequences of Energy Consumption.
Principles of solar radiation: Solar constant, extraterrestrial and terrestrial solar radiation,
Direct & diffuse radiation, solar radiation on tilted surface.
UNIT - II Periods: 9L
SOLAR THERMAL SYSTEMS & SOLAR ENERGY STORAGE SYSTEMS
Solar Thermal Systems: Types of solar collectors-non-concentric & concentric type, flat plate
collectors, Absorber coatings.
Solar energy storage systems - Types & Applications - Solar Photovoltaic Systems
UNIT - III Periods: 10L
WIND ENERGY & BIO-MASS
Wind energy: Sources and potentials of WEC systems, horizontal and vertical axis wind
mills, performance characteristics, Betz criteria.
Bio-mass: Principles of Bio-conversion, Anaerobic/aerobic digestion, types of bio gas
digesters, Case study - utilization for cooking and economic aspects.
UNIT - IV Periods: 10L
GEOTHERMAL ENERGY & OCEAN ENERGY
Geothermal energy: Geothermal sources- classification- vapour, liquid dominating systems,
applications, potential in India.
Ocean energy: Ocean Thermal Energy Conversion (OTEC)-principles and thermodynamic
cycles. Energy of tides: Introduction, principles, components, operation methods, limitations of
tidal power generation. Wave energy conversion techniques.
UNIT – V Periods: 101
DIRECT ENERGY CONVERSION & FUEL CELLS:
Direct energy conversion: Principles of DEC, Thermo-electric generators, seebeck, peltier and joul
Thomson effects, Selection of materials, applications.
Magneto Hydro dynamic generators (MHD): principles, dissociation and ionization, Therma
efficiency, MHD Engine, power generation systems.
Fuel cells: Design & principle of operation, classification, types of fuel cells, efficiency and application
of Fuel cells.
1 G D Rai "Non-Conventional Energy Sources" Khanna publishers 2004
2. Tiwari and Ghosal. " <i>Renewable energy resources</i> ". Narosa publications. 2004
PEEPENCE BOOKS
1 Twidell & Weir Taylor & Francis "Renewable Energy Sources" 2006
2. Sukhatme "Solar Energy". Tata McGraw-Hill Education 1996
3. John Twideu and Tony Weir " <i>Renewal Energy Resources</i> ", BSP Publications, 2006
4. Ashok V Desai " <i>Non-Conventional Energy</i> ". Wiley Eastern publications.
WEB RESOURCES:
1. http://nptel.ac.in/courses/112101098
2. http://nptel.ac.in/courses/121010004

MANAGERIAL ECONOMICS AND FINANCIAL ACCOUNTANCY								
(Professional Elective-IV)								
Code	Category	Periods			Sessional	End Exam	Total	Credits
		L	Т	Р	Marks	Marks	Marks	
MEC 413 (B)	PE	3	0	0	40	60	100	3

Prerequisite: NIL

Г

Course Objectives: To make the students to learn and Apply the fundamentals of managerial economics the concepts of costs and break – even analysis. To acquaint the students with the different market situations and forms of business organization. To impart the knowledge of financial accounting.

Course	Course Outcomes: At the end of the course the student will be able to:						
CO-1	Differentiate micro vs macro-economics and apply the concepts of demand analysis & demand forecasting.						
CO-2	Apply costing concepts and evaluate the Break even problems.						
CO-3	Identify classes of market structure, Pricing Policies and business organizations.						
CO-4	Differentiate fixed and working capital ,explore sources of finance, depreciation techniques for various industries.						
CO-5	Prepare balance sheet of a business organization.						

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	1	2									3	
CO-2	1	2									3	
CO-3											3	
CO-4		2							2	2	3	2
CO-5	1	2							2	2	3	2

Course Outcomes	PSO1	PSO2
CO-1		1
CO-2		1
CO-3		
CO-4		1
CO-5		1

CO- Course Outcome; PO- Program Outcome; PSO-Program Specific Outcome; Level- 1: Low, 2: Medium, 3: High

SYLLABUS
UNIT - I Periods: 9L
INTRODUCTION TO MANAGERIAL ECONOMICS
Introduction to Managerial Economics: Definition; micro and macroeconomics; demand analysis - demand determinants, law of demand and its exceptions, elasticity of demand; Demand Forecasting, Factors governing demand Forecasting, Methods of demand forecasting - survey methods and statistical methods.
UNIT - II Periods: 91
COST ANALYSIS
Cost Analysis: Cost concepts - opportunity cost, fixed vs. variable costs, explicit vs. implicit costs, out of pocket vs. imputed costs; Break Even Analysis -determination of break-even point.
UNIT - III Periods: 121
MARKET STRUCTURES & BUSINESS ORGANIZATION
 Market Structures: Types of competition and Markets; features of perfect competition; imperfect competition monopoly, monopolistic competition. Objectives and Policies of Pricing- Methods of Pricing. Business Organization: Features of different forms of Business Organization- Sole trader; partnership; joint stock company; public enterprises.
UNIT - IV Periods: 91
INTRODUCTION TO CAPITAL & DEPRECIATION
Introduction to Capital: Capital and its significance, Types of Capital, Estimation of Fixed and Working capital requirements, Methods and sources of raising finance.
Depreciation : Causes of depreciation, Factors influencing depreciation, common methods of Depreciation.
INTRODUCTION TO FINANCIAL ACCOUNTING
Introduction to Financial Accounting: Final accounts of a sole trader-preparation of trading account, profit and loss account, balance sheet. Case Study: Preparing a balance sheet of a sole trader with student teams.

TEXT BOOKS:

- 1. Managerial Economics and Financial Analysis by A. R. Aryasri; McGraw-Hill Education (India) Private Limited, New Delhi (2015).
- 2. Engineering Economics, Volume I by Tara Chand; Published By Nem Chand & Bros, Roorke (2019).
- 3. IM Pandey, "Financial Management" Vikas Publications 11th Edition, 2017.

REFERENCE BOOKS:

- 1. Managerial Economics by Varshney & Maheswari; Published by Sultan Chand, 2014.
- 2. Financial Accounting by Shim & Siegel; Published by Schaum's Outlines, TMH2007.
- **3.** Fundamentals of Financial Management (13th edition) By James C. VanHorne, John M. Wachowicz FT Prentice Hall Harlow 2015.

WEB RESOURCES:

https://nptel.ac.in/courses/110101005

	UNCONVENTIONAL MACHINING PROCESS (Professional Elective-IV)												
Code	Category	Periods			Sessional	End Exam	Total	Credits					
		L	L T P		Marks	Marks	Marks						
MEC 413 (C)	PE	2	2 1 0		40	60	100	3					

Prerequisite: Metal cutting, Machine Tools & Metrology

Course Objectives:

To make students acquainted with a functional understanding of equipment, process, process parameters and various energy involved in an un-conventional machining.

-	
Course	Outcomes: At the end of the course the student will be able to:
CO-1	Explain the need of Un-Conventional Machining Processes and able to classify various
	processes
CO-2	Elucidate the role of mechanical energy in Un-Conventional Machining Processes.
CO-3	Apply the knowledge on machining electrically conductive material through electrical
	energy in Un-Conventional Machining Processes.
CO-4	Describe the concept of machining the hard material using chemical energy and electro
	chemical energy.
CO-5	Explain various thermal energy based Un-Conventional Machining Processes.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	1										
CO-2	3	1										
CO-3	3	1										
CO-4	3	1										
CO-5	3	1										

Course Outcomes	PSO1	PSO2
CO-1	1	
CO-2	1	
CO-3	1	
CO-4	1	
CO-5	1	

	<u>SYLLABUS</u>									
UNI	Γ-I Periods: 6L+3T=9									
UNC	CONVENTIONAL MACHINING PROCESS									
Intr	oduction - Need - Classification - Energies employed in the processes - Brief overview of									
Abr	asive jet machining (AJM), Water jet machining (WJM), Ultrasonic machining (USM),									
Eleo	Electric discharge machining (EBM), Electro-chemical machining (ECM), Electron beam									
mac	hining (EBM), Laser beam machining (LBM), Plasma arc machining (PAM).									
UNI	T - II Periods: 6L+3T=9									
MEC	CHANICAL ENERGY BASED PROCESSES									
Abr	asive Jet Machining, Water Jet Machining and Ultrasonic Machining - Working									
Prin	ciples Equipment Process parameters Material removal rate Applications									
1 1 111	erpies, Equipment, 1 locess parameters, Material removal fate, Applications.									
UNI	Periods: 6L+3T=9									
ELE	CTRICAL ENERGY BASED PROCESSES									
Elec	etric Discharge Machining - Working Principles, Equipment, Process Parameters,									
Mat	erial removal rate, Electrode / Tool, Tool Wear, Dielectric, Flushing, Wire cut EDM -									
App	lications.									
UNI	Γ-IV Periods: 6L+3T=9									
CHE	MICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES									
Che	mical machining - Etchants, Maskants - techniques, Electro-chemical machining —									
Wo	rking principle Equipment Process Parameters Material removal rate Electrical circuit									
Flac	stro chemical grinding. Electro chemical honing. Applications									
	The chemical grinning - Electro-chemical honning - Applications.									
	T - V Periods: 6L+3T=9 DMAL ENERGY DASED UN CONVENTIONAL MACHINING DEOCESSES									
IHE	RMAL ENERGY BASED UN-CONVENTIONAL MACHINING PROCESSES									
Las	er Beam machining, Plasma Arc Machining - Principles, Equipment. Electron Beam									
Mac	chining -Principles, Equipment, Types, Beam control techniques, Material removal rate									
- A1	polications.									
1										
TEV	T POOKS									
1 EA										
1.	P. K. Mishra, Non-Conventional Machining, Narosa Publishing House, New Delhi, 2007.									
2.	P. C. Pandey and H.S. Shan, Modern Machining Processes, Tata McGraw Hill									
	Publishing Company Pvt Ltd., New Delhi, 2008.									
3.	Joao Paulo Davim, Nontraditional Machining Processes: Research Advances, Springer,									
	New York, 2013.									

REFERENCE BOOKS:

1.	Vijaya Kumar Jain, Advanced Machining Processes, Allied Publishers Pvt. Ltd., New
	Delhi, 2005.
2.	Hassan El-Hofy, Advanced Machining Processes: Nontraditional and Hybrid
	Machining Processes, McGraw-Hill Professional, New Delhi, 2005
WE]	B RESOURCES:
1.	https://onlinecourses.nptel.ac.in/noc21_me56/preview
2.	https://nptel.ac.in/courses/112/105/112105212.

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (Professional Elective-IV)												
Code	Category]	Perioc	ls	Sessional	End Exam	Total	Credits				
		L	L T P		Marks	Marks	Marks					
MEC 413(D)	PE	2	1	0	40	60	100	3				

Prerequisite: Probability and Linear Algebra

Course Objectives: To discuss about the Basic principles, techniques, and applications of artificial intelligence and further analyze and apply the insights into knowledge representation, problem-solving, and learning methods in Science and Engineering domains.

Course	Dutcomes: At the end of the course the student will be able to:										
CO-1	Illustrate foundations of Artificial Intelligence (AI) and its applications,										
	Problem Types, Characteristics and Search Space Representations.										
CO-2	Apply Search Techniques (Brute-Force, Heuristic and Game Playing) of										
	Artificial Intelligence and solving AI problems by applying suitable										
	searching methods.										
CO-3	Apply Knowledge representation and semantic in knowledge representation.										
	Discuss about Uncertainty and its importance and classify the various approaches										
	of the Expert systems using case studies.										
CO-4	Classify the variety of learning algorithms and popular machine learning										
	approaches.										
CO-5	Identify Mathematical relationships within and across Machine Learning										
	algorithms and the paradigms of supervised and un-supervised learning.										

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	2	1	2	-	2	2	2	1	1	-	2
CO-2	3	3	2	3	2	2	2	2	2	2	1	2
CO-3	2	2	1	2	1	1	2	2	2	2	-	2
CO-4	3	3	2	3	1	2	2	2	3	2	2	2
CO-5	2	2	2	2	1	2	2	2	2	1	1	2

Course Outcomes	PSO1	PSO2
CO-1	1	2
CO-2	2	2
CO-3	1	2
CO-4	2	2
CO-5	1	2

UNIT - I Periods: 6L+3T=9 FOUNDATIONS OF ARTIFICIAL INTELLIGENCE: AI problems, foundation of AI and history of AI intelligent agents: Agents and Environments, the concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation, AI Techniques, Problem Types and Characteristics, State Space Search, Production Systems and its characteristics, Applicationsof Artificial Intelligence. UNIT - II Periods: 8L+4T=12 HEURISTIC SEARCHING TECHNIQUES AND GAME PLAYING: Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first Search, Bi-Directional Search and Uniform-Cost Search. Informed Search Algorithms (Heuristic search): Introduction, Heuristic evaluation function, Generate-and-Test, Best-First Search, A* Algorithm, Problem Reduction Algorithm, CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING	SYLLA	BUS
FOUNDATIONS OF ARTIFICIAL INTELLIGENCE: AI problems, foundation of AI and history of AI intelligent agents: Agents and Environments, the concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation, AI Techniques, Problem Types and Characteristics, State Space Search, Production Systems and its characteristics, Applications of Artificial Intelligence. UNIT - II Periods: 8L+4T=12 HEURISTIC SEARCHING TECHNIQUES AND GAME PLAYING: Searching for solutions, uniformed search strategies – Breadth first search, depth first Search, Bi-Directional Search and Uniform-Cost Search. Informed Search Algorithms (Heuristic search): Introduction, Heuristic evaluation function, Generate-and-Test, Best-First Search, A* Algorithm, Problem Reduction Algorithm, AO* Algorithms, Hill climbing, Simulated Annealing, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge Representation and Structured Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicat Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introductio	UNIT - I	Periods: 6L+3T=9
Al problems, foundation of Al and history of Al intelligent agents: Agents and Environments, the concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation, AI Techniques, Problem Types and Characteristics, State Space Search, Production Systems and its characteristics, Applicationsof Artificial Intelligence. UNIT - II Periods: 8L:+4T=12 HEURISTIC SEARCHING TECHNIQUES AND GAME PLAYING: Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first Search, Bi-Directional Search and Uniform-Cost Search. Informed Search Algorithms (Heuristic search): Introduction, Heuristic evaluation function, Generate-and-Test, Best-First Search, A* Algorithm, Problem Reduction Algorithm, AO* Algorithms, Hill climbing, Simulated Annealing, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge Representation and Structured Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of cxpert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applica	FOUNDATIONS OF ARTIFICIAL INTELL	LIGENCE:
Environments, the concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation, AI Techniques, Problem Types and Characteristics, State Space Search, Production Systems and its characteristics, Applicationsof Artificial Intelligence. UNIT - II Periods: 8L+4T=12 HEURISTIC SEARCHING TECHNIQUES AND GAME PLAYING: Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first Search, Bi-Directional Search and Uniform-Cost Search. Informed Search Algorithms (Heuristic search): Introduction, Heuristic evaluation function, Generate-and-Test, Best-First Search, A* Algorithm, Problem Reduction Algorithm, AO* Algorithms, Hill climbing, Simulated Annealing, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning	AI problems, foundation of AI and histor	ry of AI intelligent agents: Agents and
problem solving agents, problem formulation, AI Techniques, Problem Types and Characteristics, State Space Search, Production Systems and its characteristics, Applications of Artificial Intelligence. UNIT - II Periods: 8L+4T=12 HEURSTIC SEARCHING TECHNIQUES AND GAME PLAYING: Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first Search, Bi-Directional Search and Uniform-Cost Search. Informed Search Algorithms (Heuristic search): Introduction, Heuristic evaluation function, Generate-and-Test, Best-First Search, A* Algorithm, Problem Reduction Algorithm, AO* Algorithms, Hill climbing, Simulated Annealing, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algo	Environments, the concept of rationality, the n	nature of environments, structure of agents,
Characteristics, State Space Search, Production Systems and its characteristics, Applicationsof Artificial Intelligence. UNIT - II Periods: 8L+4T=12 HEURISTIC SEARCHING TECHNIQUES AND GAME PLAYING: Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first search, Bi-Directional Search and Uniform-Cost Search. Informed Search Algorithms (Heuristic search): Introduction, Heuristic evaluation function, Generate-and-Test, Best-First Search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9	problem solving agents, problem formulation	on, AI Techniques, Problem Types and
Applications of Artificial Intelligence. UNIT - II Periods: 8L+4T=12 HEURISTIC SEARCHING TECHNIQUES AND GAME PLAYING: Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first search, Bi-Directional Search and Uniform-Cost Search. Informed Search Algorithms (Heuristic search): Introduction, Heuristic evaluation function, Generate-and-Test, Best-First Search, A* Algorithm, Problem Reduction Algorithm, AO* Algorithms, Hill climbing, Simulated Annealing, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT	Characteristics, State Space Search, Produ	uction Systems and its characteristics,
UNIT - II Periods: 8L+4T=12 HEURISTIC SEARCHING TECHNIQUES AND GAME PLAYING: Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first Search, Bi-Directional Search and Uniform-Cost Search. Informed Search Algorithms (Heuristic search): Introduction, Heuristic evaluation function, Generate-and-Test, Best-First Search, A* Algorithm, Problem Reduction Algorithm, AO* Algorithms, Hill climbing, Simulated Annealing, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - IV Periods: 6L+3T=9 MAC	Applicationsof Artificial Intelligence.	
UNIT - II Periods: 8L+4T=12 HEURISTIC SEARCHING TECHNIQUES AND GAME PLAYING: Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first Search, Bi-Directional Search and Uniform-Cost Search. Informed Search Algorithms (Heuristic search): Introduction, Heuristic evaluation function, Generate-and-Test, Best-First Search, A* Algorithm, Problem Reduction Algorithm, AO* Algorithms, Hill climbing, Simulated Annealing, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction, Supervised Learning – Regression – Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introducti		
HEURISTIC SEARCHING TECHNIQUES AND GAME PLAYING: HEURISTIC SEARCHING TECHNIQUES AND GAME PLAYING: Searching for solutions, uniformed search strategies – Breadth first search, depth first Search, Bi-Directional Search and Uniform-Cost Search. Informed Search Algorithms (Heuristic search): Introduction, Heuristic evaluation function, Generate-and-Test, Best-First Search, A* Algorithm, Problem Reduction Algorithm, AO* Algorithms, Hill climbing, Simulated Annealing, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge Representation and Structured Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression – Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Cluste	UNIT - II	Periods: 8L+4T=12
Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first Search, Bi-Directional Search and Uniform-Cost Search. Informed Search Algorithms (Heuristic search): Introduction, Heuristic evaluation function, Generate-and-Test, Best-First Search, A* Algorithm, Problem Reduction Algorithm, AO* Algorithms, Hill climbing, Simulated Annealing, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge Representation and Structured Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression – Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning.	HEURISTIC SEARCHING TECHNIOUES	AND GAME PLAYING:
first Search, Bi-Directional Search and Uniform-Cost Search. Informed Search Algorithms (Heuristic search): Introduction, Heuristic evaluation function, Generate-and-Test, Best-First Search, A* Algorithm, Problem Reduction Algorithm, AO* Algorithms, Hill climbing, Simulated Annealing, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge Representation and Structured Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning.	Searching- Searching for solutions, uniformed se	earch strategies – Breadth first search, depth
Introduction, Difference und of month Cost Periods: Algorithms (Heuristic search): Introduction Heuristic evaluation function, Generate-and-Test, Best-First Search, A* Algorithm, Problem Reduction Algorithm, AO* Algorithms, Hill climbing, Simulated Annealing, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge Representation and Structured Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS: Periods: 6L+3T=9	first Search Bi-Directional Search and Uniform	n-Cost Search Informed Search Algorithms
Initial sector, and sector, induction, neuron Algorithm, AO* Algorithms, Hill climbing, Simulated Annealing, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS: Periods: 6L+3T=9	(Heuristic search): Introduction Heuristic evalua	ation function Generate-and-Test Best-First
Search, A. Algorithmi, Froblem Reduction Algorithm, AO Algorithmis, Hin enholing, Simulated Annealing, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS: Periods: 6L+3T=9	Sourch A* Algorithm Problem Poduction A	laorithm AO* Algorithms Hill alimbing
Simulated Ameaning, Constraint Satisfaction Algorithm (CSP). Game Playing - Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge Representation and Structured Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS: Periods: 6L+3T=9	Search, A ⁺ Algorithm, Froblem Reduction A	logrithm (CSD) Come Diaving Advergarial
search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge Representation and Structured Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS:	Simulated Annearing, Constraint Satisfaction An	Igorithm (CSP). Game Playing - Adversaria
Game playing, Alpha-Beta pruning, Evaluation functions. UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge Representation and Structured Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS:	search, Games, mini-max algorithm, optimal d	lecisions in multiplayer games, Problem in
UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge Representation and Structured Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS: Periods: 6L+3T=9	Game playing, Alpha-Beta pruning, Evaluation	functions.
UNIT - III Periods: 6L+3T=9 LOGIC AND KNOWLEDGE REPRESENTATION Knowledge Representation and Structured Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS: Periods: 6L+3T=9		
LOGIC AND KNOWLEDGE REPRESENTATION Knowledge Representation and Structured Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS:	UNIT - III	Periods: 6L+3T=9
Knowledge Representation and Structured Knowledge: Associative networks, frame structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS: Periods: 6L+3T=9	LOGIC AND KNOWLEDGE REPRESENT.	ATION
structures, conceptual dependencies and scripts, ontologies. Logic: Prepositional logic: syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression – Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning.	Knowledge Representation and Structured H	Knowledge: Associative networks, frame
syntax and semantics, First Order Predicate Logic (FOPL): Syntax and semantics, conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression – Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS:	structures, conceptual dependencies and scrip	ots, ontologies. Logic: Prepositional logic:
conversion to clausal form, inference rules, unification, and the resolution principles. Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression – Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS:	syntax and semantics, First Order Predicate	e Logic (FOPL): Syntax and semantics,
Knowledge Acquisition and Expert System: Type of learning, Knowledge Acquisition, Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS: Periods: 6L+3T=9	conversion to clausal form, inference rules,	unification, and the resolution principles.
Early work in machine learning, learning by induction. Introduction to expert system, Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression – Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS: Periods: 6L+3T=9	Knowledge Acquisition and Expert System: 7	Type of learning, Knowledge Acquisition,
Phases of expert system, characteristics of expert system and a case study; UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression – Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS: Periods: 6L+3T=9	Early work in machine learning, learning by	induction. Introduction to expert system,
Image:	Phases of expert system, characteristics of exper	rt system and a case study:
UNIT - IV Periods: 6L+3T=9 MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression – Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS: Periods: 6L+3T=9		
MACHINE LEARNING Introduction to machine learning, Types of Learning, Supervised Learning – Regression – Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS:	UNIT - IV	Periods: 6L+3T=9
Introduction to machine learning, Types of Learning, Supervised Learning – Regression - Classification, Unsupervised learning/Clustering: Similarity and Distance Measures, Clustering Techniques: K-Means Algorithm, Hierarchical Clustering, Clustering of Categorical Attributes; Reinforcement Learning, Applications of Learning. UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS:	MACHINE LEARNING	
UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS:	Introduction to machine learning, Types of Lear Classification, Unsupervised learning/Cluster Clustering Techniques: K-Means Algorithm Categorical Attributes; Reinforcement Learning	rning, Supervised Learning – Regression - ring: Similarity and Distance Measures, n, Hierarchical Clustering, Clustering of g, Applications of Learning.
UNIT - V Periods: 6L+3T=9 ARTIFICIAL NEURAL NETWORKS:		
ARTIFICIAL NEURAL NETWORKS:	UNIT - V	Periods: 6L+3T=9
	ARTIFICIAL NEURAL NETWORKS:	
Perceptron (MLP), Error Propagation, Delta Rule, Back Propagation Algorithm, Supervised, Unsupervised and Semi-Supervised Learning, introduction to Reinforcement learning, Deep Learning: layers, activation functions, optimizers, Convolutional Neural Networks (CNN), Applications, A case study on Object Recognition using CNN.	Perceptron (MLP), Error Propagation, Del Supervised, Unsupervised and Semi-Supervise learning, Deep Learning: layers, activation fu Networks (CNN), Applications, A case study or	Ita Rule, Back Propagation Algorithm, ed Learning, introduction to Reinforcement unctions, optimizers, Convolutional Neural n Object Recognition using CNN.

TE	XT BOOKS:
1.	"Artificial Intelligence", by Elaine Rich, Kevin Knight, Shivashankar B. Nair, McGraw Hill.
2.	Artificial Intelligence Modern Approach, Russell Stuart, Norvig Peter, Pearson Education series in AI, 3rd Edition, 2019.
3.	"Artificial Intelligence, Structures, Strategies for Complex Problem Solving",by George F Luger, Addison Wesley.
4.	Machine Learning, V.K. Jain, Khanna Book Publishing Co. (P) Ltd., 2019
5.	Applied Machine Learning, M. Gopal, McGraw-Hill Education, 2018
DE	FEDENCE DOOKS.
RE	PERENCE BOOKS: Detrick Honry Winston Artificial Intelligence, Third Edition, Addison Wesley
1.	Publishing Company, 2004.
2.	Nils J Nilsson, Principles of Artificial Intelligence, Illustrated Reprint Edition, Springer Heidelberg, 2014.
3.	"Artificial Intelligence: Foundations of Computational Agent", by David L Poole, Alan
4.	"Artificial Intelligence: A Modern Approach, Prentice Hall series of Artificial Intelligence.
5.	Machine Learning. Tom Mitchell. First Edition, McGraw-Hill, 1997.
6.	Introduction to Machine Learning Edition 2, by Ethem Alpaydin
7.	The Elements of Statistical Learning, by Trevor Hastie, Robert Tibshirani, Jerome H. Friedman (freely available online)
	D DEGOLIDGEG
1.	https://nptel.ac.in/courses/1061050//
2.	https://www.ibm.com/tonics/artificial-intelligence
4.	https://hastie.su.domains/Papers/ESLIL.pdf
5.	https://www.geeksforgeeks.org/machine-learning-versus-artificial-intelligence/
L	

OPERATIONS RESEARCH										
(Professional Elective-V)										
Code	Category	Periods			Sessional	End	Total	Credits		
		L	L T P		Marks	Exam	Mark			
MEC 414(A)	PE	2	1	0	40	60	100	3		

Prerequisite: Mathematics

Course Objectives: The course is intended to identify and develop operational research models, understand the mathematical tools to solve optimization problems, and develop a report that describes the model, the solving techniques and analyses the results.

Course Outcomes: At the end of the course the student will be able to:								
Develop a linear programming and choose an appropriate method for obtaining								
an optimal solution.								
Estimate optimal solution for transportation and assignment problems.								
Compute the scheduled time of completion of a project by applying the concepts								
of PERT/CPM for decision making and further Select an inventory model and								
apply them in inventory management								
Compute optimum replacement period and optimum Job sequencing by applying								
various replacement models and sequencing models								
Develop optimal schedule by applying the concept of game theory and further								
use Queuing models to estimate the average waiting time								

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1	3	2	2								2	
CO2	3	2	2								2	
CO3	3	2	2								2	
CO4	3	2	2								2	
CO5	3	2	2								2	

Course Outcomes	PSO1	PSO2
CO-1	2	1
CO-2	2	1
CO-3	2	1
CO-4	2	1
CO-5	2	1

	SYLLABUS
UNIT	F - I Periods: 8L+4T = 12
LINE	CAR PROGRAMMING MODEL
Introd	luction to Operations Research – Linear Programming - Mathematical
Form	ulation – Graphical method – Simplex method – Two – Phase Simplex 000method, Big-
M me	thod-Duality Simplex method. Introduction to Advanced optimization techniques
UNIT	C - II Periods: 6L+3T=9
TRA	NSPORTATION AND ASSIGNMENT MODELS:
Tran	sportation model – Initial solution by North West corner method – least cost method –
VAM	. Optimality test – MODI method and stepping stone method.
Assig	nment model – formulation – balanced and unbalanced assignment problems.
UNI	C - III Periods: 6L+3T=9
PRO.	JECT MANAGEMENT AND INVENTORY MANAGEMENT:
PRO.	JECT MANAGEMENT: Basic terminologies – Constructing a project network –
Schee	luling computations – PERT – CPM.
INVE	ENTORY MANAGEMENT: Introduction, types of inventories, costs associated with
inven	tories, concept of EOQ, deterministic inventory problems with no shortages, with
shorta	ages.
UNIT	Image: T - IVPeriods: 6L+3T=9
REPI	LACEMENT AND SEQUENCING MODELS:
Repla	acement policies - Replacement of items that deteriorate with time (value of money not
chang	ging with time) - Replacement of items that deteriorate with time (Value of money
chang	ging with time) - Replacement of items that fail suddenly (individual and group
replac	cement policies).
Seque	encing models- n job on 2 machines – n jobs on 3 machines – n jobs on m machines,
Irave	ling salesman problem.
TINIT	
UNI	- V Periods: 6L+31=9
INVE	ENTORY MANAGEMENT AND QUEUING THEORY
Queu	ing theory: Queuing systems and their characteristics. M/M/1 : FCFS/ μ / μ
Gam	e theory: Optimal solution of two-person zero-sum games, the max-min and min-max
princi	iple. Games without saddle points, mixed strategies. dominance, graphical method.
princi	ple. Games without saddle points, mixed strategies. dominance, graphical method.
princi	iple. Games without saddle points, mixed strategies. dominance, graphical method.
princi	ple. Games without saddle points, mixed strategies. dominance, graphical method. F BOOKS: S D Shrama, Operation Research, Kedar Nath Ram Nath Publishers, 2015.
princi TEX 1. 2.	 F BOOKS: S.D.Shrama, Operation Research, Kedar Nath Ram Nath Publishers, 2015. Handy A. Taha, Operations Research An introduction, 10th edition, 2017.
princi TEX 1. 2. 3.	 F BOOKS: S.D.Shrama, Operation Research, Kedar Nath Ram Nath Publishers, 2015. Handy A. Taha, Operations Research An introduction, 10th edition, 2017. V. K Kapoor Operations Research S. Chand Publications . 7 th edition, 2001.
princi TEX 1. 2. 3.	 F BOOKS: S.D.Shrama, Operation Research, Kedar Nath Ram Nath Publishers, 2015. Handy A. Taha, Operations Research An introduction, 10th edition, 2017. V. K Kapoor Operations Research, S.Chand Publications , 7 th edition, 2001.
princi TEX 1. 2. 3. REFI	 F BOOKS: S.D.Shrama, Operation Research, Kedar Nath Ram Nath Publishers, 2015. Handy A. Taha, Operations Research An introduction, 10th edition, 2017. V. K Kapoor Operations Research, S.Chand Publications , 7 th edition, 2001.
princi TEX 1. 2. 3. REFI 1.	 Ipple. Games without saddle points, mixed strategies. dominance, graphical method. IPBOOKS: S.D.Shrama, Operation Research, Kedar Nath Ram Nath Publishers, 2015. Handy A. Taha, Operations Research An introduction, 10th edition, 2017. V. K Kapoor Operations Research, S.Chand Publications, 7 th edition, 2001. ERENCE BOOKS: Hira D S and Gupta P K, Operations Research. S.Chand & Sons, 2007.
princi TEX 1. 2. 3. REFI 1. 2.	 F BOOKS: S.D.Shrama, Operation Research, Kedar Nath Ram Nath Publishers, 2015. Handy A. Taha, Operations Research An introduction, 10th edition, 2017. V. K Kapoor Operations Research, S.Chand Publications , 7 th edition, 2001.
TEX 1. 2. 3. REFI 1. 2. 3.	 In points, mixed strategies. dominance, graphical method. In BOOKS: S.D.Shrama, Operation Research, Kedar Nath Ram Nath Publishers, 2015. Handy A. Taha, Operations Research An introduction, 10th edition, 2017. V. K Kapoor Operations Research, S.Chand Publications, 7 th edition, 2001. ERENCE BOOKS: Hira D S and Gupta P K, Operations Research, S.Chand & Sons, 2007. Panneerselvan. R., Operation Research, Prentice Hall of India Pvt Ltd. 2006. Kanti Swarup, Gupta P K, and Manmohan, Operations Research S, Chand & sons.

IV YEAR – I SEMESTER

Г

WEB	B RESOURCES:
1.	https://orc.mit.edu/
2.	www.orsi.in/
3.	https://nptel.ac.in/courses/110106062
4.	https://www.journals.elsevier.com/european-journal-of-operational-research/

ALTERNATE FUELS										
(Professional Elective-V)										
Code	Category	Periods			Sessional	End Exam	Total	Credits		
		L	L T P		Marks	Marks	Marks			
MEC 414(B)	PE	3	0	0	40	60	100	3		

Prerequisite: Basic Thermodynamics, Applied Thermal Engineering -II

Course Objectives: To create awareness on various alternate fuels as a primary source of energy, understand their relative importance and limitations with reference to various distinct applications and to acquaint the student with their production.

Course	Course Outcomes: At the end of the course, the student will be able to:								
CO-1	Explain the need for alternate fuels, categorize and outline their relative merits and								
	demerits.								
CO-2	Describe the harmful effects of emissions and further explain emission norms.								
CO-3	Evaluate the properties of different gaseous fuels and further study the working of engines using these fuels.								
CO-4	Demonstrate the production of bio-diesel fuel, illustrate and compare their								
	characteristics and further investigate the performance of engines using bio-diesel.								
CO-5	Outline the layout of fuel cell driven and solar powered vehicles.								

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2					2	2					
CO-2	2	2				2	2					
CO-3	2	2				2	2					
CO-4	2	2				2	2					
CO-5	2					2	2					

Course Outcomes	PSO1	PSO2
CO-1	2	
CO-2	2	
CO-3	2	
CO-4	2	
CO-5	2	

SYLLABUS						
UNIT - I Periods: 8L						
INTRODUCTION TO ALTERNATE FUELS:						
Availability and properties of alternate fuels, general use of alcohols, LPG, hydrogen, ammonia, CNG and LNG, vegetable oils and biogas, merits and demerits of various alternate fuels.						
UNIT - II Periods: 81.						
NEED FOR ALTERNATE FUELS:						
Effects of constituents of Exhaust gas emission on environmental condition of earth (N_2 , CO ₂ , CO, NO _x , SO ₂ , O ₂) Pollution created by Exhaust gas emission in atmosphere. Greenhouse effect, Factors affecting greenhouse effect. Study of Global Carbon Budget, Carbon foot print and Carbon credit calculations. Emission norms as per Bharat Standard up to BS – IV.						
UNIT - III Periods: 8L						
GASES AS ALTERNATE FUELS:						
Availability of CNG, properties, modification required to use in engines, performance and emission characteristics of CNG in SI & CI engines, performance and emission using LPG. Hydrogen- storage and handling, performance and safety aspects.						
UNIT - IV Periods: 81						
DIESEL/BIO-DIESEL FUELS-OIL FEED STOCKS:						
blend levels of bio-diesel-Testing, Bio diesel-Oxidation stability-Performance in Engines, Properties of bio-fuels and their importance in the context of IC Engines. Vegetable Oils: Various vegetable oils for engines, esterification, performance in engines, performance and emission characteristics of bio diesel and its characteristics.						
UNIT - V Periods: 8L						
FUEL CELL AND SOLAR DRIVEN VEHICLES						
 FUEL CELL AND SOLAR DRIVEN VEHICLES Fuel cell driven vehicles: Concept of Fuel cells based on usage of hydrogen and methanol, Layout of fuel cell driven vehicles, advantages and limitations, specifications, system components. Power rating and performance, Heat dissipation. Solar driven vehicles: Layout of solar driven vehicles, advantages and limitations, specifications, system components. 						
specifications, system components.						
specifications, system components. TEXT BOOKS:						
specifications, system components. TEXT BOOKS: 1. Alternate Fuels – Dr. S. S. Thipse – Jaico Publications						
specifications, system components. TEXT BOOKS: 1. Alternate Fuels – Dr. S. S. Thipse – Jaico Publications 2. Richard. L. Bechfold, Alternative Fuels Guide BooK, SAE International						
specifications, system components. TEXT BOOKS: 1. Alternate Fuels – Dr. S. S. Thipse – Jaico Publications 2. Richard. L. Bechfold, Alternative Fuels Guide BooK, SAE International REFERENCE BOOKS:						
 specifications, system components. TEXT BOOKS: Alternate Fuels – Dr. S. S. Thipse – Jaico Publications Richard. L. Bechfold, Alternative Fuels Guide BooK, SAE International REFERENCE BOOKS: Alcohols as motor fuels progress in technology, Series No. 19 – SAE Publication USE 						
 specifications, system components. TEXT BOOKS: Alternate Fuels – Dr. S. S. Thipse – Jaico Publications Richard. L. Bechfold, Alternative Fuels Guide BooK, SAE International REFERENCE BOOKS: Alcohols as motor fuels progress in technology, Series No. 19 – SAE Publication USE Alternative Fuels Guidebook – Bechtold R 						
 specifications, system components. TEXT BOOKS: Alternate Fuels – Dr. S. S. Thipse – Jaico Publications Richard. L. Bechfold, Alternative Fuels Guide BooK, SAE International REFERENCE BOOKS: Alcohols as motor fuels progress in technology, Series No. 19 – SAE Publication USE Alternative Fuels Guidebook – Bechtold R Nagpal, Power Plant Engineering, Khanna Publishers, 1991. 						
 specifications, system components. TEXT BOOKS: Alternate Fuels – Dr. S. S. Thipse – Jaico Publications Richard. L. Bechfold, Alternative Fuels Guide BooK, SAE International REFERENCE BOOKS: Alcohols as motor fuels progress in technology, Series No. 19 – SAE Publication USE Alternative Fuels Guidebook – Bechtold R Nagpal, Power Plant Engineering, Khanna Publishers, 1991. WEB RESOURCES: 						
specifications, system components. TEXT BOOKS: 1. Alternate Fuels – Dr. S. S. Thipse – Jaico Publications 2. Richard. L. Bechfold, Alternative Fuels Guide BooK, SAE International REFERENCE BOOKS: 1. Alcohols as motor fuels progress in technology, Series No. 19 – SAE Publication USE 2. Alternative Fuels Guidebook – Bechtold R 3. Nagpal, Power Plant Engineering, Khanna Publishers, 1991. WEB RESOURCES: 1. https://afdc.energy.gov/fuels/						
 specifications, system components. TEXT BOOKS: Alternate Fuels – Dr. S. S. Thipse – Jaico Publications Richard. L. Bechfold, Alternative Fuels Guide BooK, SAE International REFERENCE BOOKS: Alcohols as motor fuels progress in technology, Series No. 19 – SAE Publication USE Alternative Fuels Guidebook – Bechtold R Nagpal, Power Plant Engineering, Khanna Publishers, 1991. WEB RESOURCES: https://afdc.energy.gov/fuels/ https://www.fueleconomy.gov/feg/current.shtml 						

ADVANCED MECHANICS OF MATERIALS								
(Professional Elective-V)								
Code	Category	Periods			Sessional	End Exam	Total	Credits
		L	Т	Р	Marks	Marks	Marks	
MEC 414 (C)	PE	2	1	0	40	60	100	3

Prerequisite: Engineering Mechanics, Mechanics of Solids

Course Objectives: To make students understand the advanced topics related to indeterminate beams, plane stress and plane strain and analyze stresses in rotating discs and curved bars. Further the student will be taught the concept of shear centre and Torsion of non-circular shafts..

Course	Course Outcomes: At the end of the course the student will be able to:						
CO-1	Determine stress and strain transformations and derive constitutive equations in elasticity.						
CO-2	Analyze stresses in curved bars and rotating discs						
CO-3	Calculate fixing moments and support reactions in fixed and continuous beams						
CO-4	Determine displacements of determinate and indeterminate structures by applying Castigliano's theorem and stresses due to torsion of non-circular shafts.						
CO-5	Determine shear center in thin walled members						

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	3	3									
CO-2	3	3	3									
CO-3	3	3	3									
CO-4	3	3	3									
CO-5	3	3	3									

Course Outcomes	PSO1	PSO2
CO-1	3	
CO-2	3	
CO-3	3	
CO-4	3	
CO-5	3	

	SYLLABUS					
UNI	T - I Periods: 6L+3T=9					
STR	STRESS AND STRAIN TRANSFORMATION & THEORY OF ELASTICITY					
Stre	ss and Strain Transformation: Plane stress transformation, plane strain					
trans	sformation, principal stresses and principal strains, strain rosettes.					
The	ory of Elasticity: Equilibrium and compatibility equations in Cartesian coordinates,					
Mate	erial property relationships - generalized Hooke's law, shear and bulk moduli.					
UNI	T - II Periods: 6L+3T=9					
CUF	RVED BARS & ROTATING DISCS					
Stre	sses in Curved Bars: Determination of radius of neutral axis in circular, rectangular					
and	trapezoidal sections, stresses in crane hook					
Stre	sses due to Rotation: Stresses in wheel rim, rotating disc of uniform thickness and					
disc	of uniform strength, permissible speed of a solid disc.					
UNI	T - III Periods: 6L+3T=9					
FIX	ED AND CONTINUOUS BEAMS					
Fivo	d Reams: Fiving moments for a fived beam: using moment area method and Macaulay's					
meth	and effect of sinking support and rotation of support					
Con	tinuous Beams: Analysis of continuous beams using Clapevron's three-moment					
theo	rem. reactions at the supports.					
	T - IV Periods: 8L+4T=12					
ENE	RGY METHODS AND TORSION OF NON-CIRCULAR SHAFTS					
Ene	rgy Methods: Elastic strain energy for various types of loading, Application of indiana's theorems to statically determined and indeterminete structures subjected to					
Casi	and transverse loading					
Tors	sion of Non-Circular Shafts: Concept of Saint Venant's warping function and Prandtl					
stres	s function maximum shear stress in solid sections – triangular and square maximum					
shea	r stress in thin walled closed sections.					
UNI	T - V Pariods: 6I +3T=0					
	NSVERSE SHEAR					
Shea	r in straight members, thin walled members, concept of shear center for open thin walled					
mem	hers.					
TEX	AT BOOKS:					
1.	L. S. Srinath, Advanced mechanics of solids, 3rd Edition, McGraw-Hill, 2009					
2.	S S Rattan, Strength of Materials, 2nd Edition, Tata McGraw Hill Education, 2011.					
DEEDENCE DOOKS.						
1	NEFENERCE DOURD.					
2	Ferdinand P. Beer, F. Russell Johnston /Mechanics of Materials / TATA McGraw					
2.	Hill Third Edition					
3.	Jacob Pieter Den Hartog /Advanced strength of materials /Dover Publications					
	NewYork					
4						
4.	Seely and Smith / Advanced Mechanics of materials/ / John Willey					
WE	B RESOURCES:					
1.	https://ocw.mit.edu/courses/materials-science-and-engineering/3-11-mechanics-of-					
	materials-fall-1999/modules/					

PRODUCT DESIGN AND MANUFACTURING								
(Professional Elective-V)								
Code Category	Category	Periods			Sessional	End Exam	Total	Credita
	Category	L	Т	Р	Marks	Marks	Marks	Cicuits
MEC 414(D)	PE	3	0	0	40	60	100	3

Prerequisite: Manufacturing Process

Course Objectives: Develop a comprehensive understanding of product design principles, manufacturing considerations, value engineering, modern approaches, and the role of computers in product design, manufacturing, and management.

Course Outcomes: At the end of the course the student will be able to:					
CO-1	Explain the essential factors and phases involved in the design process.				
CO-2	analyze product strategies, consider human factors in product design, and apply				
	functional design principles.				
CO-3	Describe the DFM process, estimate manufacturing costs, and consider human				
	factors in product design for optimal usability.				
CO-4	Apply value engineering techniques, explore modern approaches to product design,				
	and analyze the benefits of concurrent design.				
CO-5	Explain the role of computers in product design, manufacturing, and management,				
	and explore advanced manufacturing concepts such as CIM and JIT.				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	1	1									
CO-2	2	2	2									
CO-3	2	2	2									
CO-4	2	2	2									
CO-5	2	2	2									

Course Outcomes	PSO1	PSO2
CO-1	1	
CO-2	2	
CO-3	2	
CO-4	2	
CO-5	2	

SYLL	ABUS						
UNIT - I	Periods: 9L						
INTRODUCTION TO PRODUCT DESIGN	INTRODUCTION TO PRODUCT DESIGN:						
Definition of Product Design, Design by Evolution, Design by Innovation, Essential Factors of Product Design, Production–Consumption Cycle, Flow and Value Addition in the Production–Consumption Cycle, The Morphology of Design (The Seven Phases), Primary Design Phases and Flowcharting, Role of Allowance, Process Capability, and Tolerance in Detailed Design and Assembly.							
UNII - II	Periods: 9L						
PRODUCT DESIGN PRACTICE AND HU CONSIDERATIONS:	MAN ENGINEERING						
Product Strategies, Pricing Strategy for Product, Product Quality Strategy, Product Luxuriousness Strategy, Product Utility Strategy, Time to Market, Analysis of the Product, The Three S's, Standardization, Renard Series, Simplification, Role of Aesthetics in Product Design, Functional Design Practice							
UNIT - III	Periods: 9L						
DESIGN FOR MANUFACTURING(DFM) CONSIDERATIONS IN PRODUCT DESIG	AND HUMAN ENGINEERING GN :						
Design for Manufacturing: Overview of the DFM Process, Estimation of components, assembly and supporting product Time, Development Cost, Product Quality, H costs	of manufacturing costs, Reduction of costs of ion, impact of DFM decisions on Development External Factors Component reuse, Life cycle						
costs. Human Engineering Considerations in Product Design: Human Being as Applicator of Forces, Anthropometry: Man as Occupant of Space, The Design of Controls, The Design of Displays, Man/Machine Information Exchange, Workplace Layout from Ergonomic Considerations, Noise, Heating and Ventilating, Lighting							
UNIT - IV	Dowindow OL						
	Periods: 9L						
 VALUE ENGINEERING AND MODERN APPROACHES TO PRODUCT DESIGN: Value, Nature and Measurement of Value, Maximum Value, Normal Degree of Value, Importance of Value , The Value Analysis Job , Creativity , Steps to Problem-Solving and Value Analysis, Value Analysis Tests , Value Engineering Idea Generation Check-list, Cost Reduction Through Value Engineering Case Study on Tap Switch Control Assembly Material and Process Selection in Value Engineering. Modern Approaches to Product Design: Concurrent Design, The Design Team, Benefits from Concurrent Design Approach, Quality Function Deployment (QFD), Rapid Prototyping 							

UNI	T - V Periods: 9L						
ROI	LE OF COMPUTER IN PRODUCT DESIGN, MANUFACTURING AND						
MA	NAGEMENT:						
Prod	uct Cycle and CAD/CAM, Role of Computer in Manufacturing, Role of Computer in						
Desi	gn Process, Creation of a Manufacturing Database, Computer Integrated Manufacturing:						
Defi	nition, Integrating Product Design, Manufacturing and Production Control, Benefits of						
CIM	; Communication Networks, Group Technology, Production Flow Analysis (PFA),						
Com	puter Aided Process Planning (CAPP), Material Requirement Planning (MRP), Moving						
Tow	ards Total Automation: Role of Artificial Intelligence, Flexible Manufacturing Systems,						
Just-	In-Time (JIT) Manufacturing						
TEX	T BOOKS:						
1.	A. K. Chitale, R. C. Gupta, Product Design And Manufacturing, Sixth edition, PHI						
2.	Eppinger, S. and Ulrich, K., 2015. Product design and development. McGraw-Hill Higher Educatio						
REF	ERENCE BOOKS:						
1.	Magrab, E.B., Gupta, S.K., McCluskey, F.P. and Sandborn, P. Integrated product and						
	process design and development: the product realization process. CRC Press, 2009						
2.	Boothroyd, G.,. Product design for manufacture and assembly. Computer-Aided						
	<i>Design</i> , 26(7), pp505-520						
WE	B RESOURCES:						
1.	https://onlinecourses.nptel.ac.in/noc21_me66						

IV YEAR – I SEMESTER

HEAT TRANSFER										
Code	Category	ategory Periods Sessional End Exam Total								
	0,	L T P		Marks	Marks	Marks				
MEC 415	PC	2	1	0	40	60	100	3		

Prerequisite: Mathematics-I, Basic Thermodynamics, Fluid Mechanics & Hydraulic

Course Objectives: To understand and apply the principles of heat transfer in analyzing heat exchange devices.

~										
Course	Course Outcomes: At the end of the course the student will be able to:									
CO-1	Determine the one dimensional steady state heat conduction through slabs,									
	concentric cylinders, concentric spheres and fins									
	concentric cynhaers, concentric spheres and fins.									
CO-2	Predict the temperature-time history and heat foregone in unsteady state heat									
	conduction and apply dimensional analysis to convection heat transfer									
	conduction, and apply dimensional analysis to convection near transfer.									
CO-3	Determine rate of heat transfer in forced and natural convection									
000										
CO-4	Apply LMTD and ϵ -NTU methods for design of heat exchangers and explain pool									
	boiling and condensation phenomena.									
CO-5	Calculate the radiative heat exchange between various geometries by making use of									
00-3	Calculate the radiative heat exchange between various geometries by making use of									
	radiation laws.									

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	3	2				1	1	1	1		1
CO-2	3	3	2				1	1	1	1		1
CO-3	3	3	2				2	1	1	1		1
CO-4	2	3	2				2	1	1	1		1
CO-5	3	3	2				1	1				

Course Outcomes	PSO1	PSO2
CO-1	3	
CO-2	3	
CO-3	3	
CO-4	3	
CO-5	3	

SYLL	ABUS
UNIT - I	Periods: 6L+3T=9
UNIT TITLE: Conduction Hoot Transfor	

UNIT TITLE: Conduction Heat Transfer

Basic Concepts:

Modes of heat transfer – Basic laws of heat transfer – General heat conduction equation in Cartesian, Cylindrical and Spherical coordinates.

One-Dimensional Steady State Heat Conduction:

Temperature distribution and heat conduction in homogeneous slabs, coaxial cylinders and concentric spheres – Overall heat transfer coefficient - Electrical analogy - Critical radius of insulation. Systems with variable Thermal conductivity – Systems with internal heat generation, Temperature distribution and heat transfer in long fins, short fins and fins with insulated tip – fin effectiveness and fin efficiency.

NOTE: Case study on Fins

UNIT - II	Periods: 6L+3T=9
UNIT TITLE: Transient Heat Conduction &	& Dimensional Analysis

Transient heat conduction (One-Dimensional):

Systems with negligible internal resistance – Significance of Biot and Fourier Numbers - Chart solutions of transient conduction systems.

Dimensional Analysis:

Buckingham's π -theorem – Dimensional analysis applied to forced convection and natural convection – Significance of various non-dimensional numbers.

NOTE: Case study on applications of Transient Heat Conduction

UNIT - III	Periods: 6L+3T=9
UNIT TITLE: Convective Heat Transfer	

Forced Convection: External Flow – Boundary layer theory - flow over a horizontal flat plate – flow across cylinders and spheres - Empirical correlations for Nusselt number. Internal Flow - velocity and thermal boundary layers in laminar flow through pipe – hydrodynamic and thermal entry lengths - Empirical correlations for Nusselt number. Reynolds and Colburn analogies for turbulent flow.

Natural Convection: Velocity and thermal boundary layers in heat transfer by natural convection from a vertical plate - empirical correlations for Nusselt number for natural convection from plates and cylinders.

NOTE: Case study on applications of Convection

UNIT - IV		Periods: 6L+3T=9
UNIT TITLE: Heat Exchangers and	Heat '	Fransfer in Phase Change

Heat Exchangers: Classification – Overall heat transfer coefficient - Fouling factor – LMTD and NTU methods for Parallel flow and Counter flow heat exchangers

Boiling and Condensation: Regimes of saturated pool boiling of water – Drop-wise and film-wise condensation – Nusselt's analysis for laminar film-wise condensation on a vertical plate and horizontal pipes.

NOTE: Case study on Shell and tube Heat Exchangers

UNIT - V	Periods: 6L+3T=9
UNIT TITLE: Radiation Heat Transfer Con	icepts

Thermal Radiation: Emissivity characteristics and laws of Black body radiation – Irradiation– laws of Planck, Wien, Kirchoff, Stefan and Boltzmann

Radiation Heat Transfer: Heat exchange between two black bodies – shape factor, Heat exchange between between (i) a small gray body with a large enclosure, (ii) two parallel geometries - Radiation shields.

ТЕХ	AT BOOKS:									
1.	Dr. Sachdeva, Fundamentals of Engineering Heat and Mass Transfer, 5th Edition, New Age International Publishers Limited, 2017.									
2.	A.F. Mills & V. Ganeshan, Heat Transfer, 2nd Edition, Pearson Publishers, 2009.									
3.	J.P. Holman and S. Bhattacharya, Heat Transfer, 10th Edition, Tata McGraw Hill, 2017.									
DA	FA BOOKS:									
1.	C.P.Kothandaraman, S. Subramaniam, <i>Heat and Mass Transfer Data Book</i> , 10 th Edition, New Age International Publishers Limited,2022.									
REF	FERENCE BOOKS:									
1.	Er. R.K. Rajput, Heat and Mass Transfer, 4th Edition, S. Chand Limited, 2007.									
2.	Yunus A Cengel; Afshin J. Ghajar, <i>Heat and Mass Transfer: Fundamentals and Applications</i> , 5 th Edition, Tata Mc Graw Hill, 2014.									
3.	F.P. Incropera, D.P. Dewitt, T.L. Bergman and A.S. Lavine, Incropera's Principles of									
	Heat and Mass Transfer, Wiley India Edition, 2018.									
WE.	B RESOURCES:									
1.	http://www.mie.uth.gr/labs/ltte/grk/pubs/ahtt.pdf									

METROLOGY & MECHATRONICS- LAB										
Code	Category		Period	ls	Sessional	End Exam	Total	Credits		
		L	Т	Р	Marks	Marks	Marks			
MEC 416	PC	0	0	3	50	50	100	1.5		

Prerequisite: Metal cutting, Machine tools & Metrology & Kinematics of machinery

Course Objectives:

To acquaint the students with calibrating measuring instruments and also to measure different parameters like angle, distance, flatness, gear tooth parameters and roundness & concentricity of spigot. Further the objective is also to introduce PLC and familiarize them with ladder programming for applications using sensor & traffic light applications.

Course	Dutcomes: At the end of the course the student will be able to:
CO-1	Calibrate measuring instruments (Vernier caliper, Screw gauge, Dial gauge &
	Vernier height gauge).
CO-2	Measure the included angle between two adjacent sides of a given specimen by
	using a Universal Bevel protractor and also taper angle of a tapered bar by using a
	Sine bar.
CO-3	Determine the included angle of a V-block and Gear tooth parameters of a given
	spur gear by experimentation.
CO-4	Check the concentricity and roundness of the given spigot by using a dial gauge,
	check the flatness of the given surface using Autocollimator and also determine
	the central distance between two holes in a template using Vernier height gauge.
CO-5	List and Explain the working of components in a PLC and sensor kit & develop a
	ladder logic programme in PLC for applications using sensors & Traffic signal
	application.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	2		2				1		2		1
CO-2	2	2		2				1		2		1
CO-3	2	2		2				1		2		1
CO-4	2	2		2				1		2		1
CO-5	2	2	2		3			1		2		1

Course Outcomes	PSO1	PSO2
CO-1		2
CO-2		2
CO-3		2
CO-4		2
CO-5		2

CO- Course Outcome; PO- Program Outcome; PSO-Program Specific Outcome; Level- 1: Low, 2: Medium, 3: High

Department of Mechanical Engineering, ANITS.

LIST OF EXPERIMENTS										
S.NO	NAME OF THE EXPERIMENT	COURSE								
		OUTCOME								
1	Calibrate the given Vernier caliper and determine the thickness of	CO1								
	the given work piece.									
2	Calibrate the given micrometer and determine the thickness of the	CO1								
	given work piece.									
		0.01								
3	Calibrate the given Dialguage and determine the thickness of the	COI								
	given work piece.									
	Calibrate the given Vernier height gauge and determine the	CO1								
4	this knows of the given work gives	COI								
	thickness of the given work piece.									
5	Measure the included angle between two adjacent sides of a given	CO2								
	specimen by using a Universal Bevel protractor									
6	Determine the taper angle of a tapered bar by using a Sine-bar.	CO2								
7	Measure the included angle of a V-block.	CO3								
8	Measure the Gear tooth parameters of a spur gear.	CO3								
9	Check the flatness of the given surface plate by using an auto-	CO4								
	collimator.									
10	Measure the central distance between two holes of a template by	CO4								
	using a Vernier height gauge.									
11	Check the roundness and concentricity of a spigot using a Dial	CO4								
	gauge.									
12	Training on DLC based Senson hit	CO5								
12	Training on PLC based Sensor Kit.	05								
12	Training on DLC based control of Traffic lights	CO5								
13	Training on PLC based control of Trainic lights.	005								

	HEAT TRANSFER LABORATORY													
Code	Category	Periods			Sessional	End Exam	Total	Credits						
	Category	L	Т	Р	Marks	Marks	Marks	Credits						
MEC 417	PC	0	0	3	50	50	100	1.5						

Prerequisite: Heat Transfer, Fluid Mechanics & Hydraulic Machinery

Course Objectives: To demonstrate the principles of conduction, convection and radiation through experimentation.

Course	Course Outcomes: At the end of the course the student will be able to:										
CO-1	Evaluate thermal conductivity of liquids and solids through experimentation.										
CO-2	Verify lumped system analysis and performance of extended surfaces by experimental work.										
CO-3	Analyze the heat transfer in free and forced convection.										
CO-4	Determine Stefan-Boltzmann constant and emissivity of a gray body experimentally.										
CO-5	Determine the overall heat transfer coefficient in a double pipe heat exchanger and on condensing surfaces experimentally.										

PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
CO	3	3		2				1		2		2
CO	3	3		2				1		2		2
CO	3	3		2				1		2		2
CO	3	3		2				1		2		2
CO	3	3		2				1		2		2

Course Outcomes	PSO1	PSO2
CO-1	2	2
CO-2	2	2
CO-3	2	2
CO-4	2	2
CO-5	2	2

<u>SYLLABUS</u> LIST OF EXPERIMENTS

- 1. Determination of thermal conductivity of asbestos powder at different heat inputs in hollow sphere.
- 2. Determination of thermal conductivity of glass wool at different heat inputs in composite cylinder.
- 3. Determination of thermal conductivity of metal rod (Brass).
- 4. Determination of thermal conductivity of Liquid (Liquid Paraffin)
- 5. Determination of overall heat transfer coefficient of composite wall.
- 6. Determination of convective heat transfer coefficient of vertical cylinder in free convection.
- 7. Determination of convective heat transfer coefficient of horizontal pipe in forced convection.
- 8. Determination of Stefan-Boltzmann constant.
- 9. Determination of Emissivity of Grey body.
- 10. Determination of fin effectiveness and efficiency under forced convection.
- 11. Determination of time interval in different mediums under unsteady state heat transfer.
- 12. Determination of condensation coefficient in film and dropwise condensation.
- 13. Determination of overall heat transfer coefficient of a double pipe heat exchanger.

DA	TA BOOKS:
1.	Heat and Mass Transfer Data Book , C.P.Kothandaraman , S. Subramaniam, 10th
	Edition, New Age International Publishers Limited, 2022.
WE	B RESOURCES:
1.	https://vlab.amrita.edu/index.php?sub=1&brch=194

NOTE: Heat Transfer Data Books are permitted for internal and external examinations.

Г

INDUSTRIAL TRAINING-II												
Codo	Category	Per	iods/\	Neek	Sessional	End	Total	Credits				
Couc	Category	L	Т	Р	Marks	Exam	Marks	Cicuits				
MEC 418	PR	-	-	-	100	-	100	1				

Prerequisite: Core subjects of Mechanical Engineering

Course Objectives: The Industrial training program is intended to provide an exposure to the student on the industrial ambience, safety, processes, machinery, the intricacies involved in the industrial activities and most significantly the application of theoretical concepts to solve industrial problems.

Course	Course Outcomes: At the end of Industrial Training, the student will be able to:									
CO-1	Demonstrate the application of basic engineering principles for explaining the									
	industrial processes.									
CO-2	Explore the effects of industrial operations on the society and environment and the									
	importance of ethics and moral values in engineering practice.									
CO-3	Explain the significance of working in teams for accomplishment of a given task in									
	industry.									
CO-4	Communicate orally and in written format with dexterity on the processes observed									
	in the industry.									
CO-5	Exhibit interest in extending the knowledge gained in the industrial training.									

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	2	2	2	2						2	
CO-2	1	1	1	1	1	3	3	3				
CO-3									3			
CO-4										3		
CO-5	2	1	1	1	1							3

Course Outcomes	PSO1	PSO2
CO-1	3	2
CO-2	2	2
CO-3	1	1
CO-4	1	1
CO-5	2	2

CO- Course Outcome; PO- Program Outcome; PSO-Program Specific Outcome; Level- 1: Low, 2: Medium, 3: High

٦

GUIDELINES

The industrial training program is for a minimum duration of a fortnight and can be extended to one month. The student can choose an industry of his/her choice for the program. It has to be carried out at the end of III year – II semester The student has to submit a comprehensive report at the end of the program.

The evaluation process is done in the final year Ist semester and is based on internal Viva – voce examination.

PROJECT PHASE-I										
Code	Category		Peri	ods	Sessional	End	Total	Credita		
		L	Т	Р	Marks	Exam	Marks	Credits		
MEC 419	PR	-	-	4	-	100	100	2		

Prerequisite: All Courses of Mechanical Engineering

Course Objectives: The project work is intended to give the student an opportunity to apply the theoretical and practical concepts of sciences, mathematics and engineering to formulate and analyze engineering problems by using experimentation / analytical methods / software tools to obtain valid solutions, which are innocuous to the environment & beneficial to the society. The project work also envisions to imbibe the importance of human ethics, working in teams, enhancing the managerial competencies and skills of communication and presentation.

Course	Course Outcomes: At the end of Project-Phase-I, the student will be able to:							
CO-1	Formulate an engineering problem from the gaps identified from the literature (or)							
	by observing the societal/industrial requirements.							
CO-2	Devise a solution methodology and chart out its implementation.							
CO-3	Assess the worthiness of the project in terms of its impact on meeting the needs of							
	the society for sustainable development.							
CO-4	Develop the ability to work as a team member for the accomplishment of the project.							
CO-5	Comprehend the design of experiments/model and/or usage of software tools.							
CO-6	Communicate orally and in written format with dexterity on the Project.							

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	3	1	2	2	3	1	2	3	2		3
CO-2	2	2	3	2	3						2	2
CO-3				1	1	3	3	1				1
CO-4									3			1
CO-5	2	2	2	3	3			2				1

Course Outcomes	PSO1	PSO2
CO-1	3	2
CO-2	3	2
CO-3	3	1
CO-4	2	1
CO-5	3	3
CO-6	2	1

GUIDELINES

In the project first phase, the student is exposed to the requirements to be met in the project. The student is given an opportunity to decide the area of work based on his interest. Thereafter, the student has to review the literature and summarize the findings. Based on the review, the student and the guide finalize the problem and chart out the procedure for executing the project work.

- For analytical work, the governing equations and mathematical modeling has to be completed.
- For projects involving experimental analysis, the setting up of experimentation, procurement of materials & accessories should be completed.
- For projects involving simulation using software tools, modeling should be completed.
- For projects involving fabrication of prototypes, the basic design & development of the model and procurement of accessories should be completed.

The evaluation of Phase-I of the project work is based on an internal Viva-voce examination which is conducted twice. The first evaluation is done in the mid of the semester followed by the final evaluation at the end of the semester. The student has to submit a report.

AUTOMOBILE ENGINEERING									
Code	Category	Periods			Sessional	End Exam	Total	Credits	
		L	Т	Р	Marks	Marks	Marks		
MEC 4110	SC	2	0	0	40	60	100	2	

Prerequisite: Applied Thermal Engineering - II, Theory of Machines - I, Material Science, Basic Electrical and Electronic Systems

Course Objectives: To acquaint the students with the working of various automobile systems like engine, transmission, suspension, vehicle control, electrical and electronics.

Course	Course Outcomes: At the end of the course the student will be able to:							
CO-1	Categorize automobiles and describe the constructional features of engine parts.							
CO-2	Examine the operational features of various systems of engines used in an automobile.							
CO-3	Explain various transmission systems of an automobile.							
CO-4	Describe & distinguish various suspension systems, steering systems & brake systems of an automobile.							
CO-5	Illustrate the principles related to electrical and electronic systems used in an automobile.							

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	2	2									
CO-2	3	2	2									
CO-3	3	2	2									
CO-4	3	2	2						1	1	1	1
CO-5	3	2	2									2

Course Outcomes	PSO1	PSO2
CO-1	2	-
CO-2	2	-
CO-3	2	-
CO-4	2	-
CO-5	2	-

SYLL	ABUS
UNIT - I	Periods: 8L
INTRODUCTION:	
Automobile - Definition, layout, classificatio	n; chassis.
Engine components: cylinder block and cra	ank case, cylinder, cylinder head, piston and
piston rings, crank shaft, connecting rod, muf	fler.
Engine Classification: based on arrangement	t of cylinders, Multi-Valve engines.
Exhaust Emissions and their control: EGR	and Catalytic Converters, BS-6 Phase-1 and
Phase-2 - RDE, DEF, SCR	
· · ·	
UNIT - II	Periods: 10L
ENGINE AND GEAR BOX:	
Fuel Systems: Basic components in Petrol e	engine fuel system. Electronic Fuel Injection.
Ignition Systems: Conventional and Electroni	ic.
Basic components in diesel engine fuel syster	n, Injectors: distributor type; CRDI.
Engine Cooling: Air cooled and Water coole	d Engines.
Lubrication: Dry sump and Wet sump.	
Clutch: Necessity, Working of single & mu	ılti plate clutch, centrifugal clutch, CVT and
Fluid coupling/Torque converter.	
Gearbox: Necessity of gear box, World	king Principle of Constant mesh clutch,
Synchromesh and Automatic Gearbox.	
UNIT - III	Periods: 10L
TRANSMISSION, SUSPENSION AND VI	EHICLE CONTROL SYSTEM:
Differential: Necessity, Constructional Feature	res and Working of LSD.
Axles: Constructional Features and Types of	f Rear Axle. Tires: Tire Construction, Radial
Tires, Tire specification, Tire rotation. Whe	el alignment and balancing: Importance of
Castor, Camber, Toe-in, Toe-out and balance	weight.
Suspension System: Types of suspension system:	ystems: MacPherson strut and Wishbone, air
suspension. Vehicle Control: Steering syst	em: Steering gear box and its types, Power
Steering. Brake system: Necessity, Drum,	Disc, Parking and Power Brakes, Working
Principle of Air and Hydraulic Brakes, ABS,	EBD.
,	
UNIT - IV	Periods: 10L
HYBRID VEHICLES:	
Hybrid Vehicles - Need for hybrid and elec	tric vehicles - Series parallel architecture of
Hybrid Electric Vehicles (HEV) – Plug-in H	ybrid Electric Vehicles (PHEV)- Power train
components. Power Split devices for Hvb	rid Vehicles - Operation modes - Control
Strategies for Hybrid Vehicle.	1
Electrical system: Starting system, Charg	ing System. Electronic System: Electronic

Engine Management system, Automotive Embedded System: Dieetrone System. Dieetrone System. Case study: Economic feasibility of hybrid vehicles.

UN	T - V Periods: 10L
ELI	ECTRIC VEHICLES
Des velo Typ Mot Bat base Mar	ign requirement for electric vehicles- Layout of an electric vehicle, Range, maximum city, acceleration, power requirement, mass of the vehicle and transmission efficiency. es of Motors, Characteristic of DC motors, PM motors, Switched reluctance motors, or Drives and speed controllers, Regenerative Braking. tery Parameters- Different types of batteries – Lead Acid- Nickel based-Sodium ed-Lithium based- Metal Air based. Battery charging- Quick Charging devices. Battery magement System.
TE	XT BOOKS:
1.	Kirpal Singh, Automobile Engineering Vol-I & II, 12thedition, Standard Publishers, 2011.
2.	William H. Crouse and Donald L. Anglin, Automotive Mechanics, 10 th edition, Tata McGraw- HillPublishing Company Limited, 2006.
3.	KK Jain & RB Asthana, Automobile Engineering, 9 th edition, Tata McGraw-Hill Publishing Company Limited, 2002.
4.	James Larminie and John Lowry, "Electric Vehicle Technology Explained " John Wiley & Sons,2003.
DE	
RE 1.	S. Srinivasan, Automotive Mechanics, 2 nd edition, Tata McGraw-Hill Publishing Company Limited, 2003
2.	Joseph Heitner, Automotive Mechanics (principles and practices,2 nd edition, East West press, 2006.
3.	S Srinivasan, <i>Automotive Engines</i> , 4 th edition, Tata McGraw-Hill Publishing Company Limited, 2001.
4.	Iqbal Husain, "Electric and Hybrid Vehicles-Design Fundamentals", CRC Press,2003
WE	B RESOURCES:
1.	https://saeindia.org/mobility-engineering/
2.	https://www.autocarindia.com/stories
<i>5</i> .	https://www.autocarpro.in/segments/autotechnology
4.	https://www.motorauthority.com/news/technology
5.	nups.//www.princcion.cdu/~ota/disk1/1775/7514/7514.fDI

PROJECT PHASE-II										
Code	Category	Periods			Sessional	End Exam	Total	Credits		
		L	Т	Р	Marks	Marks	Marks	Credits		
MEC 422	PR	-	-	16	100	100	200	8		

Prerequisite: All Courses of Mechanical Engineering

Course Objectives: The project work is intended to give the student an opportunity to apply the theoretical and practical concepts of sciences, mathematics and engineering to formulate and analyze engineering problems by using experimentation / analytical methods / software tools to obtain valid solutions, which are innocuous to the environment & beneficial to the society. The project work also envisions to imbibe the importance of human ethics, working in teams, enhancing the managerial competencies and skills of communication and presentation.

Course Outcomes: At the end of Project-Phase-II, the student will be able to:									
CO-1	Apply the basic engineering knowledge for solving the problem identified.								
00.0									
CO-2	Perform experimentation/analysis/simulation by using appropriate tool to assimilate								
	the required data								
	the required data.								
CO_3	Assess and validate the data obtained with the existing literature/implement the data								
00-5	Assess and valuate the data obtained with the existing interature implement the data								
	to fabricate the prototype of the intended component								
	to habiteate the prototype of the intended component.								
CO-4	Demonstrate ethical values and detail the financial aspects in the execution of the								
	beindur ethicul vulues and detail the infancial aspects in the execution of the								
	project								
CO 5	Develop the shility to work as a team member for the accomplishment of the president								
00-5	Develop the ability to work as a team member for the accomplishment of the project.								
CO_6	Articulate orally and in written format with devterity on the project								
0-0	Articulate orany and in written format with dexterity on the project								

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO-1	3	3	3	2	2	2	2				2	3	
CO-2	3	3	3	3	3		1				2	3	
CO-3	3	3	3	2	2						2	3	
CO-4	2				3	2	1	3			3	3	
CO-5									3		2	3	
CO-6	2									3		3	
Course Outcomes					PSO1					PSO2			
CO-1					3				3				
CO-2					3				3				
CO-3					3				3				
CO-4					3				3				
CO-5					3				3				
CO-6					3				3				

GUIDELINES

In the second phase of the project work, the student should continue the work from the stage where he has left in the phase-I.

The evaluation of Phase-II of the project work is based on both internal and external examination. The internal evaluation is done in the mid and also at the end of the semester. The students have to present their findings before a review committee which is followed by Viva – voce in both the internal and external examinations