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ABSTRACT 

 

Rockets have multiple stages because the effectiveness of a rocket is inversely 

proportional to its mass and number of stages allows us to reduce the mass of the rockets 

as it operates. The single stage has a lot of empty fuel tank mass that we need to carry 

with us.The multi-stage has dropped its empty fuel tank and become a smaller; more 

effective rocket. The lower power stage will be flying up with empty tanks at the expense 

of fuel of a new tank. Each and every kilogram out will be beneficial. The masses of the 

empty tanks would not be nice to keep the engines and let go the tanks. We are doing a 

mathematical optimization  of gross lift off mass for a required burnout velocity and 

payload ,optimal weight distribution  for  arbitrary number of stages like 2,3,4 and 5 

having different structural ratios and specific impulses  in each stage, staging 

optimization gives a quick insight about vehicle performance capability prior to trajectory 

design. Finally with this optimization technique we compared to gross lift off mass 

variation for two launch vehicles (i.e Ariane-1 and Proton m) for various burnout 

velocities and payloads at different number of stages. 
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                                                 NOMENCLATURE 

 

∆𝑣 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑠𝑝𝑒𝑒𝑑 

 𝐶𝑗= relative exhaust gas velocity 

 ʌ=mass ratio 

𝑚𝑜 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 

𝑚𝑓 = 𝑓𝑖𝑛𝑎𝑙 𝑚𝑎𝑠𝑠 

𝑚𝑠 = 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑚𝑎𝑠𝑠 

𝑚𝑝 = 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑛𝑡 𝑚𝑎𝑠𝑠 

𝑚𝑝𝑙 = 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑚𝑎𝑠𝑠 

𝐼𝑠𝑝 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑖𝑚𝑝𝑢𝑙𝑠𝑒 

𝑔𝑜 = 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑎𝑡 𝑠𝑒𝑎 𝑙𝑒𝑣𝑒𝑙 

ʌ𝑘 = 𝑚𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 of kth stage 

𝜀𝑘 = 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑟𝑎𝑡𝑖𝑜 of kth stage 

𝜆𝑘 = 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑟𝑎𝑡𝑖𝑜 of kth stage 

𝑉𝑜𝑟𝑏𝑖𝑡 = 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑡 𝑟𝑎𝑑𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

GM=earths gravitational parameter 

r=radial distance from the Earths center to the satellite 

a=semi major axis 

∆𝑉𝑔 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑙𝑜𝑠𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 

∆𝑉𝑑 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑙𝑜𝑠𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑑𝑟𝑎𝑔 



 
 

∆𝑉𝑝 = 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑙𝑜𝑠𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑎𝑛𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 

∆𝑉𝑔𝑎𝑖𝑛 = velocity gain due to Earth′s rotation  

P = Lagrangers multiplier 

a = Semi majoraxis of an elliptical orbit 

φ = Latitude angle of a location 

 γ = Flight  path angle 

 α = Steering angle 

 A = Azimuth angle 

  rp = Payload injection radius from foacal point 

  ω = Argument of perigee 

  Ω = Right ascension of the ascending node 

   e = Eccentricity of an elliptical orbit 

   i = Inclination 
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                 1.  INTRODUCTION 

 

         1  Introduction to Rockets: 

The study of rockets is an excellent way for students to learn the basics 

of forces and the response of an object to external forces. All rockets use 

the thrust generated by a propulsion system to overcome the weight of the 

rocket. For full scale satellite launchers, the weight of the payload is only a 

small portion of the lift-off weight. Most of the weight of the rocket is the 

weight of the propellants. As the propellants are burned off 

during poweredascent, a larger proportion of the weight of the vehicle 

becomes the near-empty tankage and structure that was required when the 

vehicle was fully loaded. 

1.1Types of Staging of Rocket: 

 In order to lighten the weight of the vehicle to achieve orbital velocity, most 

launchers discard a portion of the vehicle in a process called staging. There 

are two types of rocket staging, serial and parallel. 

1.1.1Serial Staging: 

In this Staging there is a small, second stage rocket that is placed on top of a 

larger first stage rocket. The first stage is ignited at launch and burns through 

the powered ascent until its propellants are exhausted. The first stage engine 

is then extinguished, the second stage separates from the first stage, and the 

second stage engine is ignited. The payload is carried atop the second stage 

into orbit. Serial staging was used on the Saturn V moon rockets. The Saturn 

V was a three stage rocket, which performed two staging maneuvers on its 

way to earth orbit. The discarded stages of the Saturn V were never retrieved. 

         

https://spaceflightsystems.grc.nasa.gov/education/rocket/newton2r.html
https://spaceflightsystems.grc.nasa.gov/education/rocket/rktth1.html
https://spaceflightsystems.grc.nasa.gov/education/rocket/rockpart.html
https://spaceflightsystems.grc.nasa.gov/education/rocket/payload.html
https://spaceflightsystems.grc.nasa.gov/education/rocket/rktpow.html
https://spaceflightsystems.grc.nasa.gov/education/rocket/rktrflght.html


3 
 

              

 

                                                  Fig 1.1 Serial Staging 

1.1.2  Parallel Staging: 

 In this staging, as shown in the Fig 1.1, several small first stages are strapped 

onto to a central sustainers rocket. At launch, all of the engines are ignited. 

When the propellants in the strap-on are extinguished, the strap-on rockets are 

discarded. The sustainers engine continues burning and the payload is carried 

atop the sustainers rocket into orbit. Parallel staging is used on the Space 

Shuttle. The discarded solid rocket boosters are retrieved from the ocean, re-

filled with propellant, and used again on the Shuttle. Some launchers, like the 

Titan III's and Delta II's, use both serial and parallel staging. The Titan III has 

a liquid-powered, two stage Titan II for a sustainers and 

two solidrocket strap-on at launch. After the solids are discarded, the 

sustainers engine of the Titan II burns until its fuel is exhausted. Then the 

https://spaceflightsystems.grc.nasa.gov/education/rocket/lrockth.html
https://spaceflightsystems.grc.nasa.gov/education/rocket/srockth.html
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second stage of the Titan II is burned, carrying the payload to orbit. The Titan 

III is another example of a three stage rocket. 

 

                                      

 

                                        Fig 1.2 Parallel Staging 

 

 

1.2   Effectiveness of a Staging 

 A rapid analytical method for the optimization of rocket propulsion 

systems is presented for a vertical take-off, horizontal landing, single-

stage-to-orbit launch vehicle. This method utilizes trade-offs between 

propulsion characteristics affecting flight performance and engine system 
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mass. The performance results from a point-mass trajectory optimization 

program are combined with a linearized sizing program to establish 

vehicle sizing trends caused by propulsion system variations. The 

linearized sizing technique was developed for the class of vehicle systems 

studied here. The specific examples treated in this paper are the 

optimization of nozzle expansion ratio and lift-off thrust-to-weight ratio to 

achieve either minimum gross mass or minimum dry mass. Assumed 

propulsion system characteristics are high chamber pressure, liquid oxygen 

and liquid hydrogen propellants, conventional bell nozzles, and the same 

fixed nozzle expansion ratio for all engines on a vehicle.The single stage 

rocket is not a very feasible way to place masses into orbit given the fact 

that the mass ratio between initial mass and burnout mass is not smaller 

than 0.1, and the Isp (specific impulse) of fuels is no higher than ~450 and 

the thrust to weight ratio is no bigger than 2 or so. This leads us to 

multistage rockets. multistage rocket, or step rocket, is a launch vehicle 

that uses two or more rocket stages, each of which contains its own 

engines and propellant. A tandem or serial stage is mounted on top of 

another stage; a parallel stage is attached alongside another stage. The 

result is effectively two or more rockets stacked on top of or attached next 

to each other. Two-stage rockets are quite common, but rockets with as 

many as five separate stages have been successfully launched. By 

jettisoning stages when they run out of propellant, the mass of the 

remaining rocket is decreased. Each successive stage can also be 

optimized for its specific operating conditions. 

 

 

1.3  Payload: 

  

It is the carrying capacity of an aircraft or launch vehicle, usually 

measured in terms of weight. Depending on the nature of the flight or 



6 
 

mission, the payload of a vehicle include may  cargo, passengers, flight 

crew, munitions, scientific instruments or experiments, or other 

equipment. Extra fuel, when optionally carried, is also considered part of 

the payload. In a commercial context (i.e., an airline or air freight carrier), 

payload may refer only to revenue-generating cargo or paying passengers 

for a rocket, the payload can be a satellite, space probe, 

or spacecraft carrying humans, animals, or cargo. For a ballistic missile, 

the payload is one or morewarheads and related systems; the total weight 

of these systems is referred to as the throw-weight. 

The fraction of payload to the total liftoff weight of the air or spacecraft is 

known as the "payload fraction".When the weight of the payload and fuel 

are considered together, it is known as the "useful load fraction". In 

spacecraft, "mass fraction" is normally used, which is the ratio of payload 

to everything else, including the rocket structure. 

             1.4  Specific Impulse:  

It is a measure of how effectively a rocket uses propellant or a jet 

engine uses fuel. By definition, it is the total impulse (or change 

in momentum) delivered per unit of propellant consumed and 

is dimensionally equivalent to the generated thrust divided by the 

propellant massflowrate or weight flow rate. If mass (kilogram, pound-

mass, or slug) is used as the unit of propellant, then specific impulse has 

units of velocity. If weight (newton or pound-force) is used instead, then 

specific impulse has units of time (seconds). Multiplying flow rate by the 

standard gravity (g0) converts specific impulse from the mass basis to the 

weight basis. 

Specific impulse includes the contribution to impulse provided by external 

air that has been used for combustion and is exhausted with the spent 

propellant. Jet engines use outside air, and therefore have a much higher 

specific impulse than rocket engines. The specific impulse in terms of 

propellant mass spent has units of distance per time, which is a notional 
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velocity called the effective exhaust velocity. This is higher than 

the actual exhaust velocity because the mass of the combustion air is not 

being accounted for. Actual and effective exhaust velocity are the same in 

rocket engines not utilizing air or other intake propellant such as water. 

Specific impulse is inversely proportional to specific fuel 

consumption (SFC) by the relationship Isp = 1/(go·SFC) for SFC in 

kg/(N·s) and Isp = 3600/SFC for SFC in lb/(lbf·hr). 

 

1.5  Lift Off Mass: 

 

It is the initial mass of a Rocket. Lift off mass includes the total mass of 

fuels and oxidizers. Lift off mass should always be greater than the weight 

of the Rocket otherwise the Rocket would never takeoff. Generally a 

Rocket moves due to acceleration in the forward direction.While take off 

an upper thrust acts on the rocket. This thrust should equal the forces of 

gravity as well as the drag forces created by pushing the gases downwards. 

The sole aim of Rocket is to be propagated to a point where gravity does 

not act any more. 

 

1.6  Solidboosters:  

     

    Solid fuel rocket boosters are large solid propellant motors used to provide 

thrust in spacecraft launches from initial launch through the first ascent 

stage. 

 

1.7  Total Mass:  

             It constitutes of both structural and propellent mass. 

             1.8  Structural Ratio: 

Structural ratio is defined as the ratio of structural mass to the total mass 
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1.9  Payload Ratio: 

 It is the ratio of payload mass to the total mass. 

1.10  Tsiolkovsky’s Rocket Equation: 

  

                                               Δv = ve ln 
𝑚0

𝑚𝑓
 = Ispg0 ln 

𝑚0

𝑚𝑓
 

                                    

Tsiolkovsky rocket equation, classical rocket equation, or ideal rocket 

equation is a mathematical equation that describes the motion of vehicles 

that follow the basic principle of a rocket.This tells us that the change in 

velocity achievable is equal to the effective exhaust velocity times the 

natural log of the initial mass divided by the final mass.  So we can see 

that the greater the ratio between the initial and final mass of the rocket, 

the more effective the rocket canbe.In the below picture are depictions of 

two rockets.  The one on the left is a single stage. 

 

                

 

  Fig 1.3 Single stage and double stage rockets at the time of ignition 
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The two rockets halfway through their flight.  The single stage has a lot of 

empty fuel tank mass that we are having to carry with us. The multi-stage 

has dropped its empty fuel tank and become a smaller, leaner, more 

effective rocket.   

 

         

 Fig 1.4 Single stage and double stage rockets at the time of completion of 

first stage propellant 

 

 

The hardest a rocket has to work is immediately at launch as it is trying to 

lift the most mass (all that unburned fuel) and doing so in the greatest 

gravitational environment (closest to Earth) and in the thickest 

atmosphere.  That means a bigger engine is needed at launch than higher 

up. While the single stage has to keep using that oversized engine, the 

multi-stage can drop that big heavy engine and start using one designed for 

vacuum only. No, solid boosters are not essential.  Solid boosters are very 

effective, but many rockets do not use them.  For example, the most 
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powerful rocket ever used was the Saturn V that took us to the moon. It 

did not use solid boosters. 

 

1.11  History Of Staging Of Rockets:  

In the 14th century,the oldest known multistage rocket; this was the 'fire-

dragon issuing from the water' used mostly by the Chinese navy. It was a 

two-stage rocket that had booster rockets that would eventually burn out, 

yet before they did they automatically ignited a number of smaller rocket 

arrows that were shot out of the front end of the missile, which was shaped 

like a dragon's head with an open mouth.This multi-stage rocket may be 

considered the ancestor to the modern The British scientist and 

historian Joseph Needham points out that the written material. 

 

Another example of an early multistaged rocket is the Juhwa of Korean 

development. It was proposed by medieval Korean engineer, scientist and 

inventor Choe Museon and developed by the Firearms Bureau during the 

14th century.] The rocket had the length of 15 cm and 13 cm; the diameter 

was 2.2 cm. It was attached to an arrow 110 cm long; experimental records 

show that the first results were around 200m in range.] There are records 

that show Korea kept developing this technology until it came to produce 

the Singijeon, or 'magical machine arrows' in the 16th century. The earliest 

experiments with multistage rockets in Europe were made in 1551 by 

Austrian Conrad Haas(1509–1576),The first high-speed multistage rockets 

were the RTV-G-4 Bumper rockets tested at the White Sands Proving 

Ground and later at Cape Canaveral from 1948 to 1950. These consisted of 

a V-2 rocket and a WAC Corporal sounding rocket. The greatest altitude 

ever reached was 393 km, attained on February 24, 1949, at White Sands. 

 

In 1947, the Soviet rocket engineer and scientist Mikhail 

Tikhonravov developed a theory of parallel stages, which he called "packet 

rockets". In his scheme, three parallel stages were fired from liftoff, but all 

https://en.wikipedia.org/wiki/Multistage_rocket#cite_note-10
https://en.wikipedia.org/wiki/Multistage_rocket#cite_note-11
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three engines were fuelled from the outer two stages, until they are empty 

and could be ejected. This is more efficient than sequential staging, 

because the second-stage engine is never just dead weight. In 1951, Soviet 

engineer and scientist Dmitry Okhotsimsky carried out a pioneering 

engineering study of general sequential and parallel staging, with and 

without the pumping of fuel between stages. The design of the R-7 

Semyorka emerged from that study. The trio of rocket engines used in the 

first stage of the American Atlas I and Atlas II launch vehicles, arranged in 

a "row", used parallel staging in a similar way: the outer pair of engines 

existed as a jettisonable pair which would, after they shut down, drop 

away with the lowermost outer "skirt" structure,leaving the central 

"sustainers" engine to complete the first stage's engine burn towards 

apogee or orbit. 

 

1.12   Satellite Orbits 

 

Satellites travel around the Earth along predetermined repetitive paths 

called orbits. Fig 1.5 represents an elliptical orbit with one focus at the 

Earth’s center. 
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                                               Fig 1.5 Elliptical orbit 

                The apogee is the point on the orbit that is farthest from the Earth's       

center; whereas theperigee is the point closest to the Earth's center. Distance from 

the apogee to the Earth’s center is called the apogee radius(ra) and the distance from 

the perigee to the Earth’s center is called the perigee radius (rp).The apogee altitude 

(ha) and the perigee altitude (hp) are the heights above the Earth’s surface and 

expressed as 

                                             

                               h = ra - Re                                                         (1)   

                           hp = rp - Re                                                                   (2) 

 

In Eqs. (1) and (2), 

Re is the Earths’s equatorial radius, i.e. Re = 6378.137 km. 

 

1.12.1  Orbital Elements 

There are six parameters required to uniquely identify a specific orbit and 

they are called classical orbital elements, also known as Keplerian 
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parameters.The two main elements, which are the semimajor axis(a) and 

the eccentricity (e), respectively define the size and the shape of the 

ellipse. 

Semimajor axis (a) defines the size of the orbit and it is the            

half length of the major axis of the ellipse. 

                                     

                               a =   
𝑟𝑎+ 𝑟𝑏

2
                                                       (3) 

             

            Eccentricity (e) defines the shape of the orbit and it is the         

ratio of the distance between the two foci to the length of the 

major  axis. 

 

                                e = 
𝑐

𝑎
 = 

𝑟𝑎 − 𝑟𝑝

 𝑟𝑎+ 𝑟𝑝 
                                                  (4)                  

                  

For a circular orbit e = 0 (a = r); whereas for an elliptical orbit  

0 < e < 1 (a > 0). Trajectory is parabolic when e = 1 (a = ∞) and hyperbolic 

when e > 1 (a < 0). 

              Two elements, namely the inclination (i) and the right ascension of the      

ascending node (Ω) define the orientation of the orbital plane in space (Fig 

1.6). 
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                                                     Fig 1.6  Orbital elements 

 

 

Inclination (i) is the angle between the orbital plane and the 

equatorial plane and takes values in the range of 0-180°.It is equal to 

zero for equatorial orbits and 90°for polar orbits. Inclination can be 

determined by the following well known relation. 

                            cos i = sin A0 .cos δ0                                  (5)          

 

In Eq. (5), 

A0 is the inertial launch azimuth (angle measured clockwise from 

north),δ0 is the geocentric latitude of the launch site. 
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Eq. (5) can be satisfied if and only if i ≥ δ0. Therefore, achievable 

inclinations are constrained by the latitude of the launch site. It is 

impossible to launch directly into an inclination lower than the 

launch site’s latitude without orbit plane transfer which requires a 

large amount of velocity change (ΔV). Therefore, launch sites at 

or near the Equator are highly desirable, because launch into any 

inclination from them are possible. 

 

Right ascension of the ascending node –RAAN (Ω) is the angle 

between the vernal equinox direction and the ascending node. The 

ascending node is the point where the orbit crosses the equatorial 

plane when the satellite passes from the southern hemisphere to the 

northern hemisphere, and the vernal equinox is the vector pointing 

the fixed stars in the constellation of Aries (Figure A.2). On the first 

day of spring, line joining the Earth’s center and the Sun’s center 

points invernal equinox direction. 

 

RAAN takes values in the range of 0-360° and is undefined when i = 

0° or i =180°. Specified RAAN can be achieved by choosing an 

appropriate injection time depending upon the longitude of the 

injection point as Maini & Agraval (2011) emphasized. Tewari 

(2007) derived a useful relationship to determine RAAN utilizing the 

spherical trigonometry. 

 

                                      Ω = λ  –  arcsin (
𝑡𝑎𝑛𝛿

tan 𝑖
)                          (6)                                          

 

In Eq. (6), 

λ is the geodetic longitude, 

𝛿 is the geocentric latitude. 
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Argument of perigee (ω) defines the orientation of the ellipse (in 

which directionit is flattened compared to a circle) in the orbital 

plane, as an angle measured fromthe ascending node to the perigee. 

Argument of perigee takes values in the range of 0-360° and is 

undefined when i = 0° or i = 180° or e = 0. As Maini & Agraval 

(2011) noted that ω can directly be calculated from the following 

relation when the injection point is the same as the perigee point. 

 

                     True anomaly (θ*) defines the position of the satellite along the   

orbit at a specific time and it is the angle between the perigee and the 

satellite location. True anomaly takes values in the range of 0-360° 

and is undefined when e = 0. At perigee and apogee points, θ* = 0° 

and θ* = 180°, respectively. 

        

A real orbit (and its elements) changes over time due to gravitational 

perturbations by other objects and the effects of the relativity. A 

Keplerian orbit is an idealized mathematical approximation and true 

anomaly is assumed as the only orbital element that changes with 

time. As mentioned above, some of the orbital elements become 

undefined for certain special cases (Table 1). 

   

                                                    

                                                Table 1 Special cases of orbits 

                                   

 

                                  

 

 

 

  

             Type of orbit Undefined parameter 

              circular (e = 0) ω & θ*: undefined 

              equatorial (i = 0) Ω & ω: undefined 

          circular and equatorial  

               (e = 0 & i = 0) 

Ω, ω & θ*: undefined 
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                                           2.  LITERATURE REVIEW 

 

EzgiCivek-Coskunet.al[1] The staging optimization problem for multistage rockets 

which carry payloads from theEarth's surface into the Earth orbits. In the early design 

phases, requirements are not so strict, there are many unknowns and problem arises as to 

what is the optimum staging to achieve thegiven mission. Therefore, designers need 

simplified tools providing a quick insight on the vehicle performance with minimum 

basic vehicle data. For this purpose, a Matlab® basedcomputer program has been written 

to determine staging parameters (number of stages, mass distribution between stages, and 

the propellant and structural masses for each individualstage) which minimize the gross 

lift-off mass of the launch vehicle for a specific mission.In this study, staging 

optimization problem has been formulated based on Delta-V equations and solved by 

method of Lagrange Multipliers. The problem has been stated in a generalform to handle 

launch vehicles having arbitrary number of stages and with various configurations 

involving serial, parallel and clustered stages; and with different structural ratios and 

propellant exhaust velocities in each stage. Staging optimization program developed in 

this study has been verified for different missions using available data of existing launch 

vehicles. Thus, a quick and effective tool to find optimal vehicle configurations in the 

conceptual design phase of a generic multistage launch vehicle has been achieved. 

 

H.H.Hallet.al[2] The optimum weight distribution for multistage rockets having different 

specific impulses and structural factors in each stage is derived. Minimization of gross 

weight for a given required burnout velocity and payload is the criterion of optimization 

used. A method is suggested for including in first approximation the effects of gravity, 

drag and turn. 
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David N. Burgheset.al[3] In this paper the fundamental characteristics of rocket 

staging are described.The equation ofmotion of a rocket is derived, and it is 

demonstrated that single stage rockets are not able to launch earth satellites 

successfully. Two-stage rockets are analysed and the optimum choice of the rocket 

stage masses is found for maximum final speed. Multistage rockets are then 

considered and again individual stage masses are found for maximum final speed with 

constant total mass. This maximum final speed is evaluated for varying number of 

stages, and it is shownthat the optimum choice for n is 2 or 3 for most earth satellite 

launching operations. 

 

F J Malinaet.al[4] The necessary velocity to escape from the earth is re-examined in 

the light of  recently released information on wartime rockets. The fundamental 

equations of motion of a rocket in outward radial flight are derived and the influence 

of each of the following design parameters is examined: c, the effective jet velocity; 

the ratio of propellant mass to initial mass; tVt the time of powered flight; M, the ratio 

of initial mass to maximum cross-sectional area, the drag coefficient based on the 

same cross-sectional area. 

 

T.N.Srivastavaet.al[5] Optimum staging programme for step rockets of arbitrary 

number of stages having different specific impulses and mass fractions with stages is 

derived, the optimization criterion being minimum take-off weight for a desired 

burntout velocity at an assigned altitude. Variation of thrust attitude angle from stage 

to stage and effects of gravity factor are taken into account. Analysis is performed for 

a degenerate problem obtained by relaxing the altitude constraint and it has been 

shown that problems of Weisbord, Subotowicz, Hall &Zambelli and Malina& 

Summerfield are the particular cases of the degenerate problem. 

 

M. Subotowiczet.al[6] This paper gives the derivation of equations for determining 

the optimum weight distribution for two-stage tandem for the case of different 
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construction parameters and propellant specific impulses in each stage. In the paper, 

the results were generalized for the case of then stage tandems, arbitrary number of 

stages, with different construction parameters and propellant specific impulses in each 

stage. All principal equations for the optimized two-stage rocket are easy to obtain 

from our equations for an optimized n-step rocket. The principal results presented in 

this paper were worked out in 1955 a n d werepresented by the author in May 1957 at 

the Conference on Rocket Techniques and Astronautics in Warsaw, Poland. The 

criterion of optimization used here is the minimization of gross weight for a given 

required burn out velocity and pay load. 

 

V. B. Tawakleyet.al[7] The effect of gravity on the optimum distribution of total 

required mass among the various stagesof a multiple stage rocket arranged series has 

been considered by making the payload ratiominimum so as to obtain a specified 

mission velocity at the end of powered flight. The special casewhen the physical 

parameters for all the step rockets are each equal, has been discussed in detail.It has 

also been shown that if the mission requirement is to achieve a given all burnt height, 

theneven at the expense of more total initial mass no more total a given all burnt 

velocity. Finally it isproved that in order to achieve a given all burnt velocity by 

arranging the stages in parallel resultsin an increase in the total initial mass compared 

to the case when they are arranged in series andthe magnitude of this increase depends 

upon the number of stages. 

 

C.N. Adkinset.al[8] In this paper addressing the problem of minimizing vehicle 

weight for specified payload and velocity at burnout generally either 1) permit a 

different specific impulse / for eachstage,1-2 but no provision for acceleration 

constraints, gravity, turning, or drag; or 2) provide for acceleration constraints and 

gravity,3 but not for turning, different 7's or drag. Reference 4, which maximizes 

payload total energy, does include acceleration constraints and the average effects of 

turning and / variation, but does not give an explicit formulation for determining these 

averages. In this Note, these formulations are included, as well as expressions for the 

average effects of drag for each stage. In addition, the angle between thrust and 

velocity vectors a will be considered in the aerodynamic sense (angle of attack) for 
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those stages which include drag and as the angle for thrust vector control of the 

vehicle trajectory for those stages which neglect drag (exoatmospheric). The idea 

behind staging is to improve performance by reducing the vehicle’s mass on the way 

to orbit. Once the propellant of a stage is consumed, the empty stage which is no 

longer useful and only adds weight to the vehicle is discarded and the next stage is 

ignited. This stage then accelerates the rest of the vehicle much faster. As a result, less 

propellant is required to reach the desired orbit. 

 

SaqlainAkhtar and He Linshuet.al[9] Conceptual design refers to systems studies 

conducted early in the design process and intended to reveal trends and allow relative 

comparisons among alternatives. Such conceptual design studies provide quantitative 

data that can be used by decision makers while the design is still flexible and before 

the greatest share of life cycle costs are committed.The major objective of this paper 

is to find the computational effectiveness and efficiency of the hybrid method first 

using GA for global space exploration then incorporating gradient based methods to 

fine-tune local solutions. This combination of methods in parallel has the promise of 

being superior to either method alone. 
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                              3.  THEORETICAL CALCULATIONS      

 

 

3.1 Basic Rocket Equation for Velocity Increment in a Time Interval: 

After time ‘t’ from starting during a small  time period of ∆t  (as lim ∆𝑡 → 0 ) 

m,𝑣(∆𝑡),(m-∆𝑚)(𝜗 + ∆𝑣) 

For a launch vehicle: 

∆𝑚 = change in mass in (∆𝑡) time,  ∆𝑣 = change of velocity in (∆𝑡) time, 

From   impulse–momentum principle 

𝐿𝑡∆𝑡→0 ∫ 𝐹1 
⃗⃗ ⃗⃗ ⃗∆𝑡

0
dt = (m-∆𝑚)(𝑣 + ∆𝑣)⃗⃗⃗⃗⃗⃗⃗⃗  – (m-∆𝑚)𝑣 

𝐹1
⃗⃗ ⃗⃗  is constant as ∆𝑡 → 0 

𝐹,⃗⃗⃗⃗ (∆𝑡) = m∆𝑣⃗⃗ ⃗⃗ ⃗ 

Similarly for jet gases  

𝐿𝑡∆𝑡→0 ∫ 𝐹2 
⃗⃗ ⃗⃗ ⃗∆𝑡

0
dt = ∆𝑚(−𝑉𝑗) -  ∆𝑚𝑣 

𝐹2,⃗⃗⃗⃗⃗⃗ (∆𝑡) = ∆𝑚(𝐶𝑗 ) 

Since ⌊𝐹1
⃗⃗ ⃗⃗ ⌋ =  − ⌊𝐹2

⃗⃗ ⃗⃗ ⌋ 

𝑀∆𝑣⃗⃗⃗⃗⃗⃗

(∆𝑡)
 = 

−∆𝑚(𝑐𝑗⃗⃗⃗⃗⃗)

∆𝑡
 

∆𝑣⃗⃗ ⃗⃗ ⃗ =
−∆𝑚

𝑚
𝑐𝑗⃗⃗⃗⃗  

cj = velocity of exhaust gas with respect to nozzle 
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 For over a period of time‘t’ we should integrate them as, 

𝐿𝑡∆𝑡→0
∆𝑣

∆𝑚
 =

𝑑𝑣⃗⃗

𝑑𝑚
 

∫ 𝑑𝑣⃗
𝑣𝑓

𝑣𝑖
  = - [-∫

𝑑𝑚  

𝑚

𝑚𝑓

𝑚𝑖
𝑐𝑗⃗⃗⃗⃗ ] 

(∆𝑣⃗⃗ ⃗⃗ ⃗)   =  - 𝑐𝑗⃗⃗⃗⃗ ln[
𝑚𝑖

𝑚𝑓
] 

 

 Fig 3.1   Plot shows variation of velocity of rocket with mass ratio for various 

ejection 

                gases velocites. 

 

  

 

{∆𝑣⃗⃗ ⃗⃗ ⃗ = over period of time t } ∆𝑣⃗⃗ ⃗⃗ ⃗ = -𝑐𝑗⃗⃗⃗⃗ ln [∧] 

{ ∧ = 
𝑚𝑖

𝑚𝑓
 = mass ratio }Rocket equation:[∆𝑣⃗⃗ ⃗⃗ ⃗]

𝑖𝑑𝑒𝑎𝑙
= |𝑐𝑗⃗⃗⃗⃗ | ln⌊∧⌋ 
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For multistage rockets  having n stages 

|∆𝑣|𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = ∑ |𝑐𝑗𝑘|𝑛
𝑘=1 ln[∧𝑘] 

                                               

                                              Fig 3.2       serial staging 

 

3.2 Serial Staging 

 For each stage 

C𝑗𝑘 =𝐼𝑠𝑝𝑘(g) 

Mass ratio =∧𝑘 = 
𝑚𝑖,𝑘

𝑚𝑓,𝑘
   =>

𝑚𝑠,𝑘+𝑚𝑝,𝑘+𝑚𝑝𝑙,𝑘

𝑚𝑠,𝑘+𝑚𝑝𝑙,𝑘
 = 

𝑚𝑜,𝑘

𝑚𝑠,𝑘+𝑚𝑝𝑙,𝑘
 

Structure ratio ℇ𝑘=>
𝑚𝑠,𝑘

𝑚𝑠,𝑘+𝑚𝑝,𝑘
 

Payload ratio = ℷ𝑘 =>
𝑚𝑝𝑙,𝑘

𝑚𝑠,𝑘+𝑚𝑝,𝑘
 

∧𝑘 = 
1+ℷ𝑘

ℇ𝑘+ℷ𝑘
 

3.3  Parallel Staging 

For parallel staging an equivalent serial staging  has determined and  all parallel 

boosters along with the propellant of core stage which burnt along with boosters is 

considered as zeroth stage 

𝑀𝑏𝑘 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑜𝑜𝑠𝑡𝑒𝑟  𝑠𝑡𝑎𝑔𝑒 

𝑀𝑝01 = 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑒 𝑠𝑡𝑎𝑔𝑒 𝑏𝑢𝑟𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑧𝑒𝑟𝑜 𝑡ℎ 𝑠𝑡𝑎𝑔𝑒 
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𝑀𝑏 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑏𝑜𝑜𝑠𝑡𝑒𝑟𝑠 

∧𝑜=
𝑚𝑘𝑏+𝑚01+𝑚𝑝01

𝑚𝑠𝑏 + 𝑚𝑜1
 

𝜀𝑜 =
𝑚𝑠𝑏

𝑚𝑘𝑏 + 𝑚𝑝𝑜1
 

𝜆𝑜 =
𝑚𝑜1

𝑚𝑘𝑏+𝑚𝑝1𝑜
  

For equivalent zeroth stage  

[𝐼𝑠𝑝]𝑎𝑣𝑔 =
[𝐼𝑠𝑝]𝑏𝑚𝑝𝑏 + [𝐼𝑠𝑝]𝑐𝑚𝑝1𝑜

𝑚𝑝𝑏 + 𝑚𝑝1𝑜
 

[𝑐𝑠𝑝]𝑜 = [𝐼𝑠𝑝]𝑎𝑣𝑔 × 𝑔  

In general range of specific impulse   250<𝐼𝑆𝑃< 475  

And the range of structural ratio     0.1<ℇk< 0.2 

Orbital velocity equation for an elliptical path by conservation of energy  

 Kℇ+Pℇ = constant 

1

2
𝑚𝑣2 - 

𝐺𝑀𝑚

𝑟 
  = constant        −−−−−−    (ⅰ)                                                          

 

3.4  Orbital Velocity at a Radial Distance from Focal Point  

By keplers law due to the conservation of angular momentum principle in equal time 

interval object covers equal area with the focal point. 
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                                              Fig 3.3 Keplers  second law 

 

𝐴1=  𝐴2 

1

2
 (𝑟1𝜃1)𝑟1 = 

1

2
 (𝑟2𝜃2)𝑟2     

1

2

(𝑟1𝜃1)

∆𝑡
𝑟1 = 

1

2

(𝑟2𝜃2)

∆𝑡
𝑟2        [if time period lt  ∆t  0 ] 

𝑣1𝑟1 = 𝑣2𝑟2  −−−−−−   (ⅱ) 

𝜃1

∆𝑡
 = ꞷ1 ,  

𝜃2

∆𝑡
 = ꞷ2    as ∆t is very small 

From eq (ⅰ)   

1

2
m𝑣1

2 - 
𝐺𝑀𝑚

𝑟1
 = 

1

2
 m𝑣1

2 ⌊
𝑟1

𝑟2
⌋ - 

𝐺𝑀𝑚

𝑟2
 

1

2
 m𝑣1

2 [
𝑟2

2−𝑟1
2

𝑟2
2 ] = GMm[

𝑟2−𝑟1

𝑟1𝑟2
] 

1

2
𝑚1𝑣1

2 [2a] = GMm[
𝑟2

𝑟1
] 

𝑣1 = √
𝐺𝑀

𝑎
(

𝑟2

𝑟1
) 

Similarly for any radial location point(P) at radius(r) from focal point with velocity(v)   

1

2
m𝑣1

2 - 
𝐺𝑀𝑚

𝑟1
 = 

1

2
 m𝑣1

2 - 
𝐺𝑀𝑚

𝑟
 

1

2
m[

𝐺𝑀

𝑎

𝑟2

𝑟1
]- 

𝐺𝑀𝑚

𝑟1
 = 

1

2
 m𝑣2 - 

𝐺𝑀𝑚

𝑟
 

 GMm[
1

𝑟
−

1

2𝑎
] = 

1

2
 m𝑣2 

𝑣𝑜𝑟𝑏𝑖𝑡𝑎𝑙 = √𝐺𝑀 [
2

𝑟
−

1

𝑎
] 

 

3.5 Velocity Gain due to Earth rotation at launch location 

Launch azimuth 
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Since, 𝐴𝑜 = sin−1[
cos 𝑖

cos 𝛿𝑜
] 

Linear velocity due to rotation of the earth at launch location 

𝑉𝑟,∅ = 𝜔𝑒𝑟𝑜 cos 𝛿𝑜 

The required velocity 

∆𝑉𝑟𝑒𝑞 = √⌈𝑣𝑜𝑟𝑏𝑖𝑡𝑎𝑙 sin 𝐴𝑜 − 𝑉(𝑟,∅)⌉
2

+ ⌈𝑉𝑜𝑟𝑏𝑖𝑡𝑐𝑜𝑠𝐴𝑜⌉2 

Velocity gain due earth rotation 

∆𝑉𝑔𝑎𝑖𝑛 = ∆𝑉𝑜𝑟𝑏𝑖𝑡 − ∆𝑉𝑟𝑒𝑞  

 

3.6 Trajectory Losses 

The actual velocity a rocket can generate can be approximated by subtracting the 

appropriate trajectory losses from the ideal velocity as follows 

∆𝑣 = 𝑔𝑜𝐼𝑠𝑝𝑚𝑜 ln
𝑊𝑂

𝑊𝑓
− ∫ 𝑔𝑠𝑖𝑛𝛾 𝑑𝑡 − ∫

𝐷

𝑚
𝑑𝑡 − ∫

𝐹

𝑚

𝑡𝑓

𝑡𝑜

𝑡𝑓

𝑡𝑜

𝑡𝑓

𝑡𝑜

(1 − 𝑐𝑜𝑠 ∝)𝑑𝑡 

The first term in this equation is the ideal velocity that we have already calculated for 

the two cases. The other three terms represent the gravity loss, dragloss, and steering 

loss,respectively.in the real world situations, all three of these losses are usually 

evaluated by numerical integration. 

Gravity losses arise because part of the rockets energy is wasted in holding it aloft and 

in pushing it against the relentless pull of earth’s gravity. The gravity loss equation 

∫ 𝑔𝑠𝑖𝑛𝛾 𝑑𝑡
𝑡𝑓

𝑡𝑜

 

Represents the numerical integral from the ignition point to the burn out point where g 

is the local gravitational acceleration, and ℽ is the flight path angle (instantaneous 

angle between the velocity vector and the local horizontal). 

The drag loss is caused by the friction between the rocket and the ambient air. It can 

be expressed as  

∫
𝐷

𝑚

𝑡𝑓

𝑡𝑜

𝑑𝑡 

Where both the drag force, D, and the mass  of the rocket, m, are continuously 

changing. The instantaneous drag force, for example, is a strong function of the 

rockets current velocity and the local density of the atmosphere. 
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The steering loss arises because the instantaneous thrust vector is not always parallel 

to the current velocity vector. This small mismatch is necessary otherwise, we could 

not steer the rocket along an optimal trajectory as it flies into space. The steering loss 

can be evaluated from the following expression: 

∫
𝐹

𝑚

𝑡𝑓

𝑡𝑓

(1 − 𝑐𝑜𝑠 ∝)𝑑𝑡 

Where F is the current thrust of the rocket is the current mass, and α is the steering 

angle, the angle between the thrust vector and the current velocity vector. 

For a typical rocket of modern design flying into a low altitude earth orbit, these 

various losses amount to about 5000 feet per second. The velocity required to reach a 

low altitude orbit is around 25000 feet per second. 

 

Fig 3.4  a plot showing gravity and drag loses of a vertical take off    

launch  vehicle with respect to its initial thrust to weight ratio 

        Velocity loss due to gravity [m/s] 
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        V_g = 81.006*TW^2 – 667.62*TW + 1505.4; 

        Velocity loss due to aerodynamic drag [m/s] 

        V_d = -32.962*TW^2 + 258.86*TW – 226.57; 

From reference of Tewari, he proposed to add a total of 1.5km/s margin 

for the possible velocity losses and gains. For a rocket launched to a 

lower earth oribit and 2km/s applied to a rocket launched to GTO orbit  

 

3.7  ∆V Mission  Formation 

∆𝑣𝑚𝑖𝑠𝑠𝑖𝑜𝑛=  ∆𝑣𝑜𝑟𝑏𝑖𝑡𝑎𝑙 + ∆𝑣𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + ∆𝑣𝑑𝑟𝑎𝑔 + ∆𝑣𝑝𝑟𝑜𝑝𝑜𝑙𝑠𝑖𝑣𝑒 − ∆𝑣𝑔𝑎𝑖𝑛 +

                                                                                                    ∆𝑣𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑎𝑟𝑔𝑖𝑛 

(∆𝑣𝑔 &∆𝑣𝑑𝑟𝑎𝑔 are known by thrust to weight ratio,∆𝑣𝑔𝑎𝑖𝑛 is due to earth rotation 

depends on leaving point of launch vehicle.) 

 

3.8 Formation of  function to be optimized  

Total mass 𝑚𝑜= 𝑚𝑜,1 = [∑ (𝑚𝑠, 𝑘 + 𝑚𝑝, 𝑘)𝑛
𝑘=1 ] +mpl 

𝑚𝑜

𝑚𝑝𝑙
 = 

𝑚𝑜,1

𝑚𝑝𝑙,2
×

𝑚𝑝𝑙,1

𝑚𝑝𝑙,2
×  

𝑚𝑝𝑙,2

𝑚𝑝𝑙,3
 ×∙∙∙∙∙∙∙∙×

𝑚𝑝𝑙𝑛−1

𝑚𝑝𝑙
 

𝑚𝑜

𝑚𝑝𝑙
 = 

𝑚𝑜,1

𝑚𝑝𝑙,1
×

𝑚𝑜,2

𝑚𝑝𝑙,2
×∙∙∙∙∙∙∙∙∙×

𝑚𝑜,𝑛

𝑚𝑝𝑙,𝑛
 

(GLOM)  𝑚𝑜 = [∏
𝑚𝑜,𝑘

𝑚𝑝𝑙,𝑘

𝑛
𝑘=1 ]mpl 

𝑚𝑜 = [∏
(1−𝜀𝑘)∧𝑘

(1−𝜀𝑘∧𝑘
)

𝑛
𝑘=1 ]mpl 

Then we have to minimize  𝑚𝑜 

𝑚𝑜 = f(𝑛, 𝜀𝑘 ,∧𝑘, 𝑚𝑝𝑙) 

Input => n,𝜀𝑘 , 𝑚𝑝𝑙 

Then 𝑚𝑜 = f ( ∧𝑘)  

Since  𝑚𝑜>1 then for 𝑚𝑜(min) then ln(𝑚𝑜) is minimum launch vehicle must provide  

∆𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒= ∑ 𝑐𝑗, 𝑘 ln(∧ 𝑘)𝑛
𝑘=1  
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By using LaGrange’s multipliers  we find minimum (GLOW) 𝑀𝑂 . 

𝑓∗=ln[𝑓] + P g   

𝑓∗ = ln [∏ [
(1−𝜀𝑘)∆𝑘

(1−𝜀𝑘∆𝑘
)
] 𝑚𝑝𝑙𝑛

𝑘=1 ] + P[∑ 𝑐𝑗 , 𝑘 ln ∆𝑘𝑛
𝑘=1 ] - ∆𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒] 

P = Lagrange multiplier      

𝑓∗=∑ ln [
(1−𝜀𝑘)∧𝑘

(1−𝜀𝑘∧𝑘
)
]𝑛

𝑘=1  + ln[𝑚𝑝𝑙] + P [∑ 𝑐𝑗, 𝑘 ln[∧ 𝑘] − ∆𝑣𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝑛
𝑘=1 ] 

𝑓∗=∑ [ln [
(1−𝜀𝑘)∧𝑘

1−𝜀𝑘∧𝑘

] + 𝑃𝑐𝑗𝑘 ln[∧ 𝑘]]𝑛
𝑘=1 + ln[𝑚𝑝𝑙] − 𝑃 ∆𝑣𝑚𝑖𝑠𝑠𝑖𝑜𝑛 

For stationary point   

𝜕𝑓∗

𝜕∧𝑘
 = 0   

(1−𝜀𝑘)

∧𝑘(1−𝜀𝑘)
+ 

𝜀𝑘

(1−𝜀𝑘∧𝑘
)
+ P 

𝑐𝑗𝑘

∧𝑘
 = 0   

[1 +  𝑃𝑐𝑗𝑘] =  
𝜀𝑘

[𝜀𝑘 −
1

∧ 𝑘
]
 

∧k = 
1+𝑃𝑐𝑗𝑘

𝑃𝜀𝑘𝑐𝑗𝑘
 

Since ∆𝑣𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = ∑ 𝑐𝑗𝑘
𝑛
𝑘=1 ln[∧ 𝑘]                                       

 ∆v = ∑ 𝑐𝑗𝑘
𝑛
𝑘=1 ln [

1+𝑃𝑐𝑗𝑘

𝑃𝜀𝑘𝑐𝑗𝑘
] 

Let Y= ∆v – ∑ 𝑐𝑗𝑘
𝑛
𝑘=1 ln [

1+𝑃𝑐𝑗𝑘

𝑃ℇ𝑘𝑐𝑗𝑘
] = 0                         ( constrained function) 

By newton raphson (technique) method y= f(P) 

P will be the root of equation function y 

3.9 For initial guess of root  

For ln [
(1−𝜀𝑘)∧𝑘

(1−𝜀𝑘∧𝑘)
] 

If  𝜀𝑘< 1 

𝜀𝑘 ∧𝑘< 1 

1 < ∧𝑘 <
1

𝜀𝑘
     ( condition – 1 ) 

1 <
1+ 𝑃𝑐𝑗𝑘

𝑃 𝑐𝑗𝑘𝜀𝑘
<

1

𝜀𝑘
(since ℷ may or may not be positive) 
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 
1

𝑃𝑐𝑗𝑘
+ 

1

𝜀𝑘
<

1

𝜀𝑘
 

 
1

𝑃𝑐𝑗𝑘
< 0 

 P< 0 

And =>
1+𝑃𝑐𝑗𝑘 

𝑃𝑐𝑗𝑘𝜀𝑘

>1   

 
1

𝑃𝑐𝑗𝑘𝜀𝑘

> 1 - 
1

𝜀𝑘
 

 
1

𝑃𝑐𝑗𝑘
> (𝜀𝑘-1)  

  P >
1

𝑐𝑗𝑘(𝜀𝑘−1)
 

  P <
−1

𝑐𝑗𝑘(1−𝜀𝑘)
 

By Newton raphson method  

Since y = 𝑓(𝑃) 

Tangent equation passing through point ( 𝑦1, 𝑃) 

y-𝑦1 = 𝑓1(𝑃)(ℷ − ℷ1) 

𝑃1 be any trail value it meet P axis at y=0 

P =  𝑃1 - 
𝑦1

𝑓1(𝑃)
 

P = 𝑃1-  
𝑓(𝑃1)

𝑓1(𝑃1)
 

Then for all    stages  ∧k will obtain  

∧k= 
1+ 𝑃𝑐𝑗𝑘

𝑃𝑐𝑗𝑘𝜀𝑘
 

Since ℷk = 
(1−∧𝑘𝜀𝑘)

(∧𝑘−1)
  

 for the  last stage payload is the mission payload  ℷ𝑛 =  
𝑚𝑝𝑙

𝑚𝑘,𝑛 ,
 

𝑚𝑘,𝑛 =  
𝑚𝑝𝑙

ℷ𝑛
 

ℷ𝑛= 
𝑚𝑘,𝑛

𝑚𝑠𝑛+𝑚𝑝𝑙
 

From this structural mass of nth stage is obtained. 
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By using structural ratio we can get propellant mass of the nth stage 

𝜀𝑛= 
𝑚𝑠𝑛

𝑚𝑠𝑛+𝑚𝑝𝑛
 

From the above values payload mass for n-1 stage(i,e. initial mass of the nth stage ) 

can be obtained by using this we can get stage  mass ,structural mass and propellant 

mass for n-1 th stage , 

ℷ𝑛−1 = 
𝑚𝑜,𝑛

𝑚𝑘,𝑛−1
 

𝑚𝑜𝑛−1 =
𝑚𝑜 , 𝑛

ℷ𝑛−1
 

Similarly In this manner  we can get the initial mass of the first stage it is the 

optimized gross lift off mass for this mission. 
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                                        4.  INTRODUCTION TO MATLAB 

                                                          

                                          

    

4.1 Introduction 

Cleve molar in 1984, Mathworks inc introduced as a simulation tool which supports 

Graphical Programming and can be interfaced with other High Level 

languages.Initially it isdeveloped by a lecturer in 1970’s to help students learn 

linearalgebra.It was later marketed and further developed under MathWorks 

Inc.(founded in 1984) – www.mathworks.comMatlab is a software package which can 

be used to perform analysisand solve mathematical and engineering problems.It has 

excellent programming features and graphics capability – easy to learn and 

flexible.Available in many operating systems – Windows, Macintosh, Unix, DOS.It 

has several toolboxes to solve specific problems. 
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4.2 What is MATLAB? 

MATLAB stands for MATrix LABoratory.It is a high-performance language for 

technical computing, math and computation, algorithm development (optimized for 

DSP),data acquisition, modeling, simulation, prototyping data analysis, exploration, 

visualization scientific and engineering graphics application development, including 

graphical user interface and building. 

 

4.3 Why to learn and use MATLAB? 

Extensive built-in commands for scientific and engineering mathematics,simple and 

intuitive programming for more complex problems, standard and widely-used 

computational environment with many features, extensions, and links to other 

software. 

 

4.4 MATLAB System 

It includes Development Environment, MATLAB Mathematical Function Library, 

MATLAB Language, Graphics and MATLAB Application Program Interface (API). 

Development Environment consists of MATLAB desktop;Editor and debugger for 

MATLAB programs (“m-files”);Browsers for help, built-in and on-line 

documentation; Extensive demos. The MATLAB Mathematical Function Library 

consists of Elementary functions, like sum, sine, cosine, and complex arithmetic; 

More sophisticated functions like matrix inverse, matrix eigenvalues, Bessel 

functions, and fast Fourier transforms; “Toolboxes” for special application areas such 

as Signal Processing. MATLAB Language consists of “Programming in the small" to 

rapidly create quick and dirty throw-away programs and “Programming in the large" 

to create large and complex application programs. Graphics consists of 2D and 3D 

plots; Editing and annotation features. MATLAB Application Program Interface 

(API) consists of A library that allows you to write C and Fortran programs that 

interact with MATLAB. 
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 4.5 Types of operators 

      4.5.1 Arithmetic operators 

      plus           - Plus                          + 

      uplus          - Unary plus               + 

      minus         - Minus                      - 

      uminus       - Unary minus            - 

      mtimes       - Matrix multiply        * 

      times          - Array multiply         .* 

      mpower      - Matrix power           ^ 

      power         - Array power            .^ 

 mldivide      - Backslash or left matrix divide            \ 

      mrdivide      - Slash or right matrix divide                 / 

      ldivide         -Left array divide                                 .\ 

      rdivide         - Right array divide                             ./ 

    4.5.2 Relational operators 

    eq                - Equal                                              = 

    ne                - Not equal                                        ~= 

    lt                 - Less than                                          < 

  gt                - Greater than                                      > 

  le                 - Less than or equal                             <= 

  ge                - Greater than or equal                          >= 
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     4.5.3 Logical operators 

    Short-circuit logical AND && 

    Short-circuit logical OR || 

    and - Element-wise logical AND & 

    or - Element-wise logical OR | 

    not - Logical NOT ~ 

    xor - Logical EXCLUSIVE OR 

    any - True if any element of vector is nonzero 

    all - True if all elements of vector are nonzero 

      

     4.5.4 Bitwise Operators 

      bitand - Bit-wise AND. 

      bitcmp - Complement bits. 

      bitor - Bit-wise OR. 

      bitmax - Maximum floating point integer. 

      bitxor - Bit-wise XOR. 

      bitset - Set bit. 

      bitget - Get bit. 

      bitshift - Bit-wise shift 
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  4.6 MATLAB windows 

 

 

                         Fig 4.1 Showing various entities in MATLAB window 
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  4.7Applications 

   • Aerospace 

   • Biometrics 

   • Medical 

   • Finance 

   • Control System 

   • Signal,Image,Audio and Video 

   • Neural networks,Fuzzy logic 

   • Animation 
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                      5.  RESULTS AND DISCUSSIONS 

 

Vehicle 1 Ariane 

Number of 

stages 

Specific 

impulses 

Structure ratios 

N=2 281 0.0859 

N=3 296 0.0976 

N=4 443 0.1504 

N=5 295 0.0921 

Table 5.1.1 Vehicle parameters of ariane 

 

For payload mass 300kgs 

 N=2 N=3 N=4 N=5 

v=8km/s 10799.7 5119.18 4962.73  

V=9km/s 19731.8 7858.58 7482.37  

V=10km/s 39659.1 12243.2 11368.7 10800.82 

V=11km/s 93857.7 19422.3 17427.2 15599 

Table 5.1.2 Variation of GLOM with respect to the number of stages at 300kgs Mpl 

for vehicle 1 at different velocities 
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   Fig:5.1.1 GLOM vs stages at 300kgs payload for vehicle 1, at various burnout 

velocity. 

 

 

To  attain velocity 8km/s, 

For vehicle 1 with the above specifications, the gross lift of mass for 2nd stage is 

10799.7 and for 3rd stage is 5119.18(where it decreased to 50%), for 4rth stage the 

gross lift off mass is 4962.3(where the decrease is less than 3%) 

So 3rd stage gives the optimal solution for gross lift off mass. 

To  attain velocity 9km/s, 

For vehicle 1 with the above specifications, the gross lift of mass for 2nd stage is 

19731.8 and for 3rdstage is 7858.58 (where it decreased to 60%), for 4rth stage the 

gross lift off mass is 7482.37(where the decrease is less than 3%) 

So 3rd stage gives the optimal solution for gross lift off mass. 

To  attain velocity 10km/s, 

For vehicle 1 with the above specifications, the gross lift of mass for 2nd stage is 

39659.1 and for 3rd stage is 12243.2(where it decreased to  50%), for 4rth stage the 
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gross lift off mass is 11368.7 (the decrease  is 8%) and for 5th stage the gross lift off 

mass is 10800.5( the decrease is less than 5%). 

So 4rth stage gives the optimal solution for gross lift off mass. 

To attain velocity 11km/s, 

For vehicle 1 with the above specifications, the gross lift of mass for 2nd stage is 

93857.7and for 3rd stage is 19422.3(where it decreased to  50%), for 4rth stage the 

gross lift off mass is 17427.2 (the decrease  is 8%) and for 5th stage the gross lift off 

mass is 15599( the decrease is less than 5%). 

So 4rth stage gives the optimal solution for gross lift off mass. 

 

 

For Payload Mass=700kgs 

 N=2 N=3 N=4 N=5 

V=8km/s 25199.4 11944.8 11579.7  

V=9km/s 46040.9 18336.7 17458.9  

V=10km/s 92097.8 28567.5 26526.9 26400.5 

V=11km/s 219001 45318.8 40663.4 38731.5 

 

Table 5.1.3Variation of GLOM with respect to the number of stages at 700kgs Mpl 

for vehicle 1 at different velocities 
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Fig:5.1.2 GLOM vs stages at 700kgs payload for vehicle 1, at various burnout 

velocity. 

 

To attain velocity 8km/s 

The vehicle having 3 stages gives optimal solution for gross lift of mass (as there is a 

decrease in 53% in GLOM from 2nd to 3rd stage) 

To attain velocity 9km/s 

The change is 71% from 2nd to 3rd stage, so the optimal solution for gross lift of mass 

is at 3rd stage  

To attain velocity 10km/s  

The change is 79% from 2nd to 3rd stage, and 8% from 3rd to 4rth stage and less than 

2% from 4rth to 5th stage, so the optimal solution is at 4rth stage. 

To attain velocity 11km/s 

The change is 80% from 2nd to 3rd stage, and 12% from 3rd to 4rth stage and less than 

5% from 4rth to 5th stage, so the optimal solution is at 4rth stage. 
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For Payload Mass=1100kgs 

 N=2 N=3 N=4 N=5 

V=8km/s 39599.1 18770.3 18196.7  

V=9km/s 72349 28814.8 27435.4  

V=10km/s 145417 44891.2 41685.2 40266.5 

V=11km/s 344145 71215.2 63899.7 60863 

Table 5.1.4Variation of GLOM with respect to the number of stages at 1100kgs Mpl 

for vehicle 1 at different velocities 

 

 

  Fig:5.1.3 GLOM vs stages at 1100kgs payload for vehicle 1, at various burnout 

velocity. 

 

To attain velocity 8km/s  

The vehicle having 3 stages gives optimal solution for gross lift of mass (as there is a 

decrease in 53% in GLOM from 2nd to 3rd stage) 

To attain velocity 9km/s  
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The vehicle having 3 stages gives optimal solution for gross lift of mass (as there is a 

decrease in 61% in GLOM from 2nd to 3rd stage) 

To attain velocity 10km/s  

The change is 70% from 2nd to 3rd stage, and 7.2% from 3rd to 4rth stage and less than 

4% from 4rth to 5th stage, so the optimal solution is at 4rth stage. 

To attain velocity 11km/s  

The change is 80% from 2nd to 3rd stage, and 11% from 3rd to 4rth stage and less than 

5% from 4rth to 5th stage, so the optimal solution is at 4rth stage. 
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                                                 6.  CONCLUSION 

 

For the optimization of gross lift mass of space launch vehicles, a mat lab  script 

written so that the optimal vehicle configuration in conceptual design phase is 

obtained and the variation for gross lift mass with other parameters is plotted. 

For the requirement that is during a predesigned phase of a space launch vehicle 

which is carrying a certain amount of payload from one particular position on earth 

surface to a desired orbital injection position, a launch vehicle is designed such that 

the gross lift of mass is optimized. 

We also took into account about the number of stages that are to be kept in order to 

get optimized solution. As lift of mass is minimized cost also minimized 

automatically. we used Lagrange multiplier and Newton rap son method for getting 

the optimization solution.npt only optimization but also the  mass is distributed in 

each stage  such that we got the optimal lift of mass and how the lift of mass varies 

with velocity ,payload  mass and number of stages and  by this we got  the optimum 

solution.  
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                                                                 APPENDIX 

 

clc 

clear all 

% USER INPUTS 

% 

=============================================================

============ 

% Mission definition 

 S = input('enter 1 if u have vmission value or  /t else enter any number'); 

 if S ~= 1 

h_inj = input('enter injection altitude in km ') ; % injection altitude (km) 

h_a = input(' enter apoge altitude in km ')  ; % [km] apogee altitude 

h_p =  input(' enter perigee altitude in km '); % [km] perigee altitude 

i = input('enter orbit inclination in degrees ')  ; %inclination 

% Launch conditions 

h_0 =  input('enter initial altitude inkm '); % [km] initial altitude 

phi_0 =   input(' enter initial latitude in deg '); % initial latitude 

V_0 =  input('enter initial speed wrt to ground'); % [m/s] initial speed wrt ground 

% Stage configuration 

TW =  input('lift- off T/W Ratio ') ; % [-] lift-off thrust-to-weight ratio 

% CONSTANTS 

% 

=============================================================

============ 

GM = 398600.4418; % [km^3/s^2] Earth's gravitational parameter 

R = 6378.137; % [km] Earth's mean radius 

  

Omega = 7.292115e-5; % [rad/s] Earth's angular velocity 

d2r = pi/180; % unit conversion from degree to radian 

% CALCULATIONS 

% 

=============================================================

============ 

% Target orbit paramete 

r_inj = R + h_inj; % [km] injection radius 

r_a = R + h_a; % [km] apogee radius 

r_p = R + h_p; % [km] perigee radius 

a = (r_a + r_p)/2; % [km] semimajor axis 

% Launch parameters 

r_0 = R + h_0; % [km] initial radius (@launch) 

A = asin(cos(i*d2r)/cos(phi_0*d2r)); % [rad] launch azimuth 

V_phi = 1e3*Omega*r_0*cos(phi_0*d2r); % [m/s] Earth's speed wrt latitude 

% Vehicle configuration 

% DeltaV calculations 

% ------------------------------------------------------------------------ 

% velocity required to keep payload in a specified orbit [m/s] 
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V_orbit = 1e3*sqrt(GM*(2/r_inj - 1/a)); 

% velocity gain due to Earth's rotation [m/s] 

V_rot = V_orbit - sqrt((V_orbit*sin(A) - V_phi)^2 + (V_orbit*cos(A))^2); 

% velocity loss due to gravity [m/s] 

V_g = 81.006*TW^2 - 667.62*TW + 1505.4; 

% velocity loss due to aerodynamic drag [m/s] 

V_d = -32.692*TW^2 + 258.86*TW - 226.57; 

% velocity loss due to steering and pressure change [m/s] 

V_p = 100; 

% initial absolute velocity [m/s] 

V_i = V_rot + V_0; 

% margin for unexpected disturbances and inaccuracies [m/s] 

V_m = 100; 

% mission deltaV [m/s] 

Vmission = V_orbit + V_g + V_d + V_p - V_i + V_m; 

% STAGING OPTIMIZATION (minimizing gross lift-off weight, m0 while 

% satisfying mission deltaV) 

% 

=============================================================

============ 

else 

Vmission = input('enter u r vmission value in m/s'); 

 end 

mpl = input('enter payload mass in kg'); % [kg] payload mass 

Isp =  input('enter specific impulse row matrix for each stage(sec)') ; % [sec] specific 

impulses for each stage 

epsilon =  input('enter structural ratio row matrix  for each stage') ; % [-] structural 

ratios for  

N = length (Isp); 

g0 = 9.80665; 

C = g0*Isp; % [m/s] exhaust velocities for each stage 

  

  

  

p = Lagr_NR(Vmission, C, epsilon); % Lagrange multiplier 

if isnan (p) == 0 % checking p is a defined number 

L = (1 + p*C)./(p*C.*epsilon); % [-] mass ratios for each stage 

lambda = (L.*epsilon - 1)./(1 - L); % [-] payload ratios for each stage 

m = zeros(N,1); 

m_pl = mpl; 

for k = N:-1:1 % calculation of step masses of each 

m(k) = m_pl/lambda(k); % stage beginning with stage N 

m_pl = m_pl + m(k); 

end 

%optimum stage configuration 

dV = C.*log(L); % [m/s] optimal deltaV split of stages 

m_s = epsilon.*m; % [kg] structural masses for each stage 

m_p = m - m_s; % [kg] propellant masses for each stage 

m01 = sum(m) + mpl; % [kg] gross lift-off mass 

lambda_t = mpl/m01; % [-] overall payload fraction 
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% print results to the command window 

fprintf('optimal deltaV split of stages:\n') 

for j = 1:N 

fprintf('%d\t %g\n', j, dV(j)) 

end 

fprintf('\noptimal stage masses:\n') 

for j = 1:N 

fprintf('%d\t %g\n', j, m(j)) 

end 

fprintf('\noptimal structural masses:\n') 

for j = 1:N 

fprintf('%d\t %g\n', j, m_s(j)) 

end 

fprintf('\noptimal propellant masses:\n') 

for j = 1:N 

fprintf('%d\t %g\n', j, m_p(j)) 

end 

fprintf('\ngross lift-off mass:\t') 

fprintf('%g', m01) 

fprintf('\ntotal payload ratio:\t') 

fprintf('%g', lambda_t) 

else 

fprintf('Failed to find a solution.') 

fprintf('\nPlease increase Isp, or decrease epsilon or payload mass.\n') 

end 

 

function p = Lagr_NR(Vmission, C, epsilon) 

% Solution of Lagrange Multiplier, p by Newton-Raphson method. 

p_0 = -1/(min(C.*(1 - epsilon))); 

p = p_0; % initial guess 

tol = 10; % error tolerance 

V = Vmission - sum(C.*log((1 + p*C)./(p*C.*epsilon))); 

while abs(V)>tol 

V = Vmission - sum(C.*log((1 + p*C)./(p*C.*epsilon))); 

dV = sum(C./p./(1 + p*C)); 

d = -V./dV; 

p = p + d; 

end 
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