
Multiple Response Optimization of machining 

parameters on turning of AA 6063 T6 aluminium 

alloy using Taguchi L9 orthogonal array coupled with 

Grey Relational Analysis. 

A project report submitted in partial fulfilment of the requirement for 

the award of the degree of 

BACHELOR OF TECHNOLOGY 

IN 

MECHANICAL ENGINEERING 

BY 

SANAPALA SRI RAM (318126520L11) 

TANGETI BHASKARARAO (318126520L02) 

BODDU ESWAR VENKAT SAI (317126520005) 

KARI SURAJ KUMAR (317126520026) 

DUVVI VEERA VENKATA PAVAN KUMAR (317126520018) 

Under the esteemed guidance of 

Mr. D S Sai RAVI KIRAN 

Assistant professor 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ACKNOWLDGEMENTS 

 

We express immensely our deep sense of gratitude to Mr. D. S. Sai Ravi Kiran, 

Assistant Professor, Department of Mechanical Engineering, Anil Neerukonda 

Institute of Technology & Sciences, Sangivalasa, Bheemunipatnam Mandal, 

Visakhapatnam district for his valuable guidance and encouragement at every stage of 

the work made it a successful fulfillment. 

 

We were very thankful to Dr. B. Nagaraju, Professor &Head of the 

Mechanical Engineering Department, Anil Neerukonda Institute of Technology & 

Sciences for their valuable suggestions. 

 

 
We express our sincere thanks to the members of non-teaching staff of 

Mechanical Engineering for their kind co-operation and support to carry on work. 

Last but not the least, we like to convey our thanks to all who have 

contributed either directly or indirectly for the completion of our work. 

 

 
SANAPALA SRI RAM (318126520L11) 

TANGETI BHASKARARAO (318126520L02) 

BODDU ESWAR VENKAT SAI (317126520005) 

KARI SURAJ KUMAR (317126520026) 

DUVVI VEERA VENKATA PAVAN KUMAR (317126520018) 



 
 

ABSTRACT 

 
 

The current work presents a novel approach for the optimization of 

machining parameters on turning of AA 6063 T6 aluminium alloy with 

multiple responses established on Taguchi L9 orthogonal array coupled 

with grey relational analysis. Experimental assessments are accomplished 

on AA 6063 T6 aluminium alloy. Turning trials are conceded out by means 

of an uncoated carbide insert under dry cutting conditions. In this exertion 

turning parameters such as cutting speed, feed rate, and depth of cut are 

optimized bearing in mind the multiple responses such as surface 

roughness (Ra) and material removal rate (MRR). A grey relational grade 

(GRG) is determined from the grey analysis. Optimum levels of 

parameters have been acknowledged based on the values of grey relational 

grade and then the noteworthy contribution of parameters is determined by 

ANOVA. To authenticate the test result, a confirmation test is executed. 

Experimental conclusions have substantiated that the responses in turning 

process can be enhanced efficiently through this approach. 
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CHAPTER 1 

INTRODUCTION 

 
Turning is a form of machining, a material removal process, which is 

used to create rotational parts by cutting away unwanted material. The 

turning process requires a turning machine or lathe, workpiece, fixture, 

and cutting tool. The workpiece is a piece of pre-shaped material that is 

secured to the fixture, which itself is attached to the turning machine, and 

allowed to rotate at high speeds. The cutter is typically a single-point 

cutting tool that is also secured in the machine, although some operations 

make use of multi-point tools. The cutting tool feeds into the rotating 

workpiece and cuts away material in the form of small chips to create the 

desired shape. 

 
Turning is used to produce rotational, typically axisymmetric, parts that 

have many features, such as holes, grooves, threads, tapers, various 

diameter steps, and even contoured surfaces. Parts that are fabricated 

completely through turning often include components that are used in 

limited quantities, perhaps for prototypes, such as custom-designed shafts 

and fasteners. Turning is also commonly used as a secondary process to 

add or refine features on parts that were manufactured using a different 

process. Due to the high tolerances and surface finishes that turning can 

offer, it is ideal for adding precision rotational features to a part whose 

basic shape has already been formed. 



 

1.1.1 Equipment: 

Turning machines, typically referred to as lathes, can be found in a variety 

of sizes and designs. While most lathes are horizontal turning machines, 

vertical machines are sometimes used, typically for large diameter 

workpieces. Turning machines can also be classified by the type of control 

that is offered. A manual lathe requires the operator to control the motion 

of the cutting tool during the turning operation. Turning machines are also 

able to be computer-controlled, in which case they are referred to as a 

computer numerical control (CNC) lathe. CNC lathes rotate the workpiece 

and move the cutting tool based on commands that are pre-programmed 

and offer very high precision. In this variety of turning machines, the main 

components that enable the workpiece to be rotated and the cutting tool to 

be fed into the workpiece remain the same. These components include the 

following: 

 

 

Manual lathe 



 

 Bed

The bed of the turning machine is simply a large base that sits on the 

ground or a table and supports the other components of the machine. 

 

 Headstock assembly

The headstock assembly is the front section of the machine that is 

attached to the bed. This assembly contains the motor and drive 

system which powers the spindle. The spindle supports and rotates 

the workpiece, which is secured in a workpiece holder or fixtures, 

such as a chuck or collet. 

 

 Tailstock assembly

The tailstock assembly is the rear section of the machine that is 

attached to the bed. The purpose of this assembly is to support the 

other end of the workpiece and allow it to rotate, as it's driven by the 

spindle. For some turning operations, the workpiece is not supported 

by the tailstock so that material can be removed from the end. 

 

 Carriage

The carriage is a platform that slides alongside the workpiece, 

allowing the cutting tool to cut away material as it moves. The 

carriage rests on tracks that lay on the bed, called "ways", and is 

advanced by a lead screw powered by a motor or handwheel. 

 
 

 Cross slide

The cross slide is attached to the top of the carriage and allows the 

tool to move towards or away from the workpiece, changing the depth 

of the cut. As with the carriage, the cross slide is powered by a motor 

or handwheel. 



 

 Compound

The compound is attached on top of the cross slide and supports the 

cutting tool. The cutting tool is secured in a tool post which is fixed 

to the compound. The compound can rotate to alter the angle of the 

cutting tool relative to the workpiece. 

 

 Turret
Some machines include a turret, which can hold multiple cutting tools 

and rotates the required tool into position to cut the workpiece. The 

turret also moves along the workpiece, feeding the cutting tool into 

the material. While most cutting tools are stationary in the turret, live 

tooling can also be used. Live tooling refers to powered tools, such 

as mills, drills, reamers, and taps, which rotate and cut the workpiece. 

 

 

1.1.2 Operations: 

 
During the process cycle, a variety of operations may be performed on the 

workpiece to yield the desired part shape. These operations may be 

classified as external or internal. External operations modify the outer 

diameter of the workpiece, while internal operations modify the inner 

diameter. The following operations are each defined by the type of cutter 

used and the path of that cutter to remove material from the workpiece. 



 External operations
 
 

o Turning - A single-point 

turning tool moves axially, 

along the side of the workpiece, 

removing material to form 

different features, including 

steps, tapers, chamfers, and 

contours. These features are 

typically machined at a small 

radial depth of cut and multiple 

passes are made until the end 

diameter is reached. 

 

 

o Facing - A single-point turning 

tool moves radially, along the 

end of the workpiece, removing 

a thin layer of material to 

provide a smooth flat surface. 

The depth of the face, typically 

very small, maybe machined in 

a single pass or may be reached 

by machining at a smaller axial 

depth of cut and making 

multiple passes. 

 

 



o Grooving - A single-point 

turning tool moves radially, 

into the side of the workpiece, 

cutting a groove equal in width 

to the cutting tool. Multiple 

cuts can be made to form 

grooves larger than the tool 

width and special form tools 

can be used to create grooves of 

varying geometries. 

 

 

o Cut-off (parting)- Similar to 

the grooving, a single-point 

cut-off tool moves radially, into 

the side of the workpiece, and 

continues until the center or 

inner diameter of the workpiece 

is reached, thus parting or 

cutting off a section of the 

workpiece. 

 

 

o Thread cutting - A single-point 

threading tool, typically with a 

60-degree pointed nose, moves 

axially, along the side of the 

workpiece, cutting threads into 

the outer surface. The threads 

can be cut to a specified length 

and pitch and may require 

multiple passes to be formed. 

 

 

 



 

 

 

 Internal operations
 

 

o Drilling - A drill enters the 

workpiece axially through the end 

and cuts a hole with a diameter 

equal to that of the tool. 

 

 

o Boring - A boring tool enters the 

workpiece axially and cuts along 

an internal surface to form 

different features, such as steps, 

tapers, chamfers, and contours. 

The boring tool is a single-point 

cutting tool, which can be set to 

cut the desired diameter by using 

an adjustable boring head. Boring 

is commonly performed after 

drilling a hole to enlarge the 

diameter or obtain more precise 

dimensions. 

 

 

o Reaming - A reamer enters the 

workpiece axially through the end 

and enlarges an existing hole to the 

diameter of the tool. Reaming 

removes a minimal amount of 

material and is often performed 

 

 
 

 



after drilling to obtain both a more 

accurate diameter and a smoother 

internal finish. 

 

 

o Tapping - A tap enters the 

workpiece axially through the end 

and cuts internal threads into an 

existing hole. The existing hole is 

typically drilled by the required 

tap drill size that will 

accommodate the desired tap. 

 

 

 

 

 
 

1.1.3 Cutting Tools for Lathe: 

The classes of cutting tool materials currently in use for machining 

operation are high-speed tool steel, cobalt-base alloys, cemented carbides, 

ceramic, polycrystalline cubic boron nitride and polycrystalline diamond. 

Different machining applications require 6 different cutting tool materials. 

The Ideal cutting tool material should have all of the following 

characteristics: 

 Harder than the work it is cutting 

 High temperature stability 

 Resists wear and thermal shock 

 Impact resistant 

 Chemically inert to the work material and cutting fluid 

 
To effectively select tools for machining, a machinist or engineer must 

have specific information about: 

 The starting and finished part shape 

 The work piece hardness 

 The material's tensile strength 

 The material's abrasiveness 

 The type of chip generated 

 The work holding setup 

 The power and speed capacity of the machine tool 



 

Some common cutting tool materials are described below: 

 
Carbon steels: Carbon steels have been used since the 1880s for cutting 

tools. However, carbon steels start to soften at a temperature of about 180o 

C. This limitation means that such tools are rarely used for metal cutting 

operations. Plain carbon steel tools, containing about 0.9% carbon and 

about 1% manganese, hardened to about 62 Rc, are widely used for 

woodworking and they can be used in a router to machine aluminium sheet 

up to about 3mm thick. 

 
High speed steels (HSS): HSS tools are so named because they were 

developed to cut at higher speeds. Developed around 1900 HSS are the 

most highly alloyed tool steels. The tungsten (T series) was developed first 

and typically contains 12 - 18% tungsten, plus about 4% chromium and 1 

- 5% vanadium. Most grades contain about 0.5% molybdenum and most 

grades contain 4 - 12% cobalt. It was soon discovered that molybdenum 

(smaller proportions) could be substituted for most of the tungsten 

resulting in a more economical formulation which had better abrasion 

resistance than the T series and undergoes less distortion during heat 

treatment. Consequently about 95% of all HSS tools are made from M 

series grades. These contain 5 - 10% molybdenum, 1.5 - 10% tungsten, 1 

- 4% vanadium, 4% Chromium and many grades contain 5 - 10% cobalt. 

HSS tools are tough and suitable for interrupted cutting and are used to 

manufacture tools of complex shape such as drills, reamers, taps, dies and 

gear cutters. Tools may also be coated to improve wear resistance. HSS 

accounts for the largest tonnage of tool materials currently used. Typical 

cutting speeds: 10 - 60 m/min. 

 
Cast Cobalt alloys: Introduced in early 1900s these alloys have 

compositions of about 40 - 55% cobalt, 30% chromium and 10 - 20% 

tungsten and are not heat treatable. Maximum hardness values of 55 - 64 

Rc. They have good wear resistance but are not as tough as HSS but can 

be used at somewhat higher speeds than HSS. Now only in limited use. 

Carbides: Also known as cemented carbides or sintered carbides were 

introduced in the 1930s and have high hardness over a wide range of 

temperatures, high thermal conductivity, high Young's modulus making 

them effective tool and die materials for a range of applications. The two 



groups used for machining are tungsten carbide and titanium carbide; both 

types may be coated or uncoated. Tungsten carbide particles (1 to 5 

micrometer) are bonded together in a cobalt matrix using powder 

metallurgy. The powder is pressed and sintered to the required insert shape. 

Titanium and niobium carbides may also be included to impart special 

properties. A wide range of grades are available for different applications. 

Sintered carbide tips are the dominant type of material used in metal 

cutting. The proportion of cobalt (the usual matrix material) present has a 

significant effect on the properties of carbide tools. 3 - 6% matrix of cobalt 

gives greater 8 hardness while 6 - 15% matrix of cobalt gives a greater 

toughness while decreasing the hardness, wear resistance and strength. 

Tungsten carbide tools are commonly used for machining steels, cast irons 

and abrasive non-ferrous materials. Titanium carbide has a higher wear 

resistance than tungsten but is not as tough. With a nickel-molybdenum 

alloy as the matrix, TiC is suitable for machining at higher speeds than 

those which can be used for tungsten carbide. Typical cutting speeds are: 

30 - 150 m/min or 100 - 250 when coated. 

 
Coatings: Coatings are frequently applied to carbide tool tips to improve 

tool life or to enable higher cutting speeds. Coated tips typically have lives 

10 times greater than uncoated tips. Common coating materials include 

titanium nitride, titanium carbide and aluminium oxide, usually 2 - 15 

micro-m thick. Often several different layers may be applied, one on top 

of another, depending upon the intended application of the tip. The 

techniques used for applying coatings include chemical vapour deposition 

(CVD) plasma assisted CVD and physical vapour deposition (PVD). 

Diamond coatings are also in use and being further developed. 

 

 
Ceramics: 

 

Alumina: 

Introduced in the early 1950s, two classes are used for cutting tools: fine 

grained high purity aluminium oxide (Al2O3) and silicon nitride (Si3N4) 

are pressed into insert tip shapes and sintered at high temperatures. 

Additions of titanium carbide and zirconium oxide (ZrO2) may be made 

to improve properties. But while ZrO2 improves the fracture toughness, it 

reduces the hardness and thermal conductivity. Silicon carbide (SiC) 9 



whiskers may be added to give better toughness and improved thermal 

shock resistance. The tips have high abrasion resistance and hot hardness 

and their superior chemical stability compared to HSS and carbides means 

they are less likely to adhere to the metals during cutting and consequently 

have a lower tendency to form a built-up edge. Their main weakness is low 

toughness and negative rake angles are often used to avoid chipping due 

to their low tensile strengths. Stiff machine tools and work set ups should 

be used when machining with ceramic tips as otherwise vibration is likely 

to lead to premature failure of the tip. Typical cutting speeds: 150-650 

m/min. 

 
Silicon Nitride: In the 1970s a tool material based on silicon nitride was 

developed, these may also contain aluminium oxide, yttrium oxide and 

titanium carbide. SiN has an affinity for iron and is not suitable for 

machining steels. A specific type is 'Sialon', containing the elements: 

silicon, aluminium, oxygen and nitrogen. This has higher thermal shock 

resistance than silicon nitride and is recommended for machining cast irons 

and nickel based super alloys at intermediate cutting speeds. 

 
Cubic Boron Nitride (CBN): Introduced in the early 1960s, this is the 

second hardest material available after diamond. cBN tools may be used 

either in the form of small solid tips or or as a 0.5 to 1 mm thick layer of 

of polycrystalline boron nitride sintered onto a carbide substrate under 

pressure. In the latter case the carbide provides shock resistance and the 

cBN layer provides very high wear resistance and cutting edge strength. 

Cubic boron nitride is the standard choice for machining alloy and tool 

steels with a hardness of 50 Rc or higher. Typical cutting speeds: 30 - 310 

m/min. 

 
Diamond: The hardest known substance is diamond. Although single 

crystal diamond has been used as a tool, they are brittle and need to be 

mounted at the correct crystal orientation to obtain optimal tool life. Single 

crystal diamond tools have been mainly replaced by 10 polycrystalline 

diamond (PCD). This consists of very small synthetic crystals fused by a 

high temperature high pressure process to a thickness of between 0.5 and 

1mm and bonded to a carbide substrate. The result is similar to cBN tools. 

The random orientation of the diamond crystals prevents the propagation 

of cracks, improving toughness. Because of its reactivity, PCD is not 



suitable for machining plain carbon steels or nickel, titanium and cobalt 

based alloys. PCD is most suited to light uninterrupted finishing cuts at 

almost any speed and is mainly used for very high-speed machining of 

aluminium - silicon alloys, composites and other non - metallic materials. 

Typical cutting speeds: 200 - 2000 m/min. 

To improve the toughness of tools, developments are being carried out 

with whisker reinforcement, such as silicon nitride reinforced with silicon 

carbide whiskers. 

As rates of metal removal have increased, so has the need for heat resistant 

cutting tools. The result has been a progression from high-speed steels to 

carbide, and on to ceramics and other super hard materials. 

 
High-speed steels cut four times faster than the carbon steels they 

replaced. There are over 30 grades of high-speed steel, in three main 

categories: tungsten, molybdenum, and molybdenum-cobalt based grades. 

 
In industry today, carbide tools have replaced high-speed steels in most 

applications. These carbide and coated carbide tools cut about 3 to 5 times 

faster than high-speed steels. Cemented carbide is a powder metal product 

consisting of fine carbide particles cemented together with a binder of 

cobalt. The major categories of hard carbide include tungsten carbide, 

titanium carbide, tantalum carbide, and niobium carbide. 

 
Ceramic cutting tools are harder and more heat-resistant than carbides, but 

more brittle. They are well suited for machining cast iron, hard steels, and 

the super alloys. Two types of ceramic cutting tools are available: the 

alumina-based and the silicon nitride-based ceramics. The alumina-based 

ceramics are used for high speed semi- and final-finishing of ferrous and 

some non-ferrous materials. The silicon nitride-based ceramics are 

generally used for rougher and heavier machining of cast iron and the super 

alloys. 



1.1.4 Cutting parameters: 

In turning, the speed and motion of the cutting tool are specified through 

several parameters. These parameters are selected for each operation based 

upon the workpiece material, tool material, tool size, and more. 

 
 

 Cutting feed - The distance that the cutting tool or workpiece 

advances during one revolution of the spindle, measured in 

inches per revolution (IPR). In some operations, the tool feeds 

into the workpiece and in others, the workpiece feeds into the 

tool. For a multi-point tool, the cutting feed is also equal to the 

feed per tooth, measured in inches per tooth (IPT), multiplied by 

the number of teeth on the cutting tool.

 Cutting speed - The speed of the workpiece surface relative to the 

edge of the cutting tool during a cut, measured in surface feet per 

minute (SFM).

 Spindle speed - The rotational speed of the spindle and the 

workpiece in revolutions per minute (RPM). The spindle speed is 

equal to the cutting speed divided by the circumference of the 

workpiece where the cut is being made. To maintain a constant 

cutting speed, the spindle speed must vary based on the diameter 

of the cut. If the spindle speed is held constant, then the cutting 

speed will vary.

 Feed rate - The speed of the cutting tool's movement relative to 

the workpiece as the tool cuts. The feed rate is measured in inches 

per minute (IPM) and is the product of the cutting feed (IPR) and 

the spindle speed (RPM).



 Axial depth of cut - The depth of the tool along the axis of the 

workpiece as it cuts, as in a facing operation. A large axial depth 

of cut will require a low feed rate, or else it will result in a high 

load on the tool and reduce the tool life. Therefore, a feature is 

typically machined in several passes as the tool moves to the 

specified axial depth of cut for each pass.

 

 

 
 Radial depth of cut - The depth of the tool along the radius of the 

workpiece as it cuts, as in a turning or boring operation. A large 

radial depth of cut will require a low feed rate, or else it will result 

in a high load on the tool and reduce the tool life. Therefore, a 

feature is often machined in several steps as the tool moves over 

at the radial depth of cut.

 



 

 

1.2 Surface Finish Definitions: 

 

 
Surface Deviations: 

 

Any departure from the nominal surface in the form of waviness, 

roughness, flaws, lay and profile. 

Waviness: 

Surface irregularities which deviate from the mean surface in the 

form of waves they may be caused by vibrations in the machine or 

work. These are generally widely spaced. The peak to valley 

distance in 
 

inches or millimetres. 
 

Waviness Width: 
 

The distance between successive waviness peaks or valleys in inches 

or 
 

millimetres. 
 

Roughness: 

Relatively finely spaced irregularities superimposed on the waviness 

pattern and caused by the cutting tool or the abrasive grain action 

and 
 

the machine feed. These irregularities are much narrower than the 

waviness pattern. 

Roughness height: 
 

The deviation measured normal to the centre line in micro inches or 

micrometres. 



 
 

Roughness width: 
 

The distance between successive roughness peaks parallel to the 

normal surface in inches or millimetres. 
 

Roughness width cut-off: 
 

The greatest spacing of repetitive surface irregularities to be included 

in 
 

the measurement of the roughness height. It must always greater than 

the roughness width. 

Flaws: 
 

Irregularities such as scratches, holes, cracks, ridges that do not 

follow a 
 

regular pattern as in the case of waviness and roughness. 
 

Lay: 
 

The direction of the predominant surface pattern caused by the 

machining process. 

Profile: 

 
The counter of specified section through a surface. 

 
1.3 Factors affecting the surface finish: 

 
The following effecting surface roughness are 

 
 Vibrations 

 Material of the work piece 

 Hardness of the work piece 

 Type of machining 



 Rigidity of the system consisting of machine took, fixture, cutting tool 

and work. 

 

1.4 Introduction to Minitab: 

 
 

Minitab is a statistics package. It was developed at the Pennsylvania 

state University by researchers Barbara F. Ryan, Thomas A. Ryan Jr., 

and Brian L. Joiner in 1972. Minitab began as a light version of 

OMINITAB, statistical analysis program by NIST. It can be used for 

learning about statistics as well as statistical research. Statistical analysis 

computer application has the advantage of being accurate, reliable and 

general faster than computing statistics and drawing graphs by hand. 

Minitab is relatively easy to use once you know a few fundamentals. 

Minitab is distributed by Minitab Inc., a privately owned company 

headquartered in state college, Pennsylvania with subsidiaries Coventry, 

England (Minitab limited), Paris, France (Minitab SARL) and Sydney, 

Australia (Minitab Pty.) 

 
 

Today, Minitab is often used in conjunction with the implementation of 

six sigma, CMMI and other statistics-based process improvement 

methods. Minitab 17, the latest version of the software, is available in 7 

languages: English, French, German, Japanese, Korean, Simplified 

Chinese and Spanish. 

 

Minitab is statistical analysis software. It can be used for learning 

about statistics as well as statistical research. Statistical analysis computer 

applications have the advantage of being accurate, reliable, and generally 

faster than computing statistics and drawing graphs by hand. Minitab is 

relatively easy to use once you know a few fundamentals. 

 

Minitab Inc. produces two other products that complement Minitab 

17: Quality trainer, a learning package that teaches statistical tools and 



concepts in the context of quality improvement that integrates with 

Minitab 17 to simultaneously develop the user’s statistical knowledge and 

ability to use the Minitab software and Quality companion 3, an integrated 

tool for managing six sigma and Lean manufacturing projects that allows 

Minitab data to be combined with management and governance tools and 

documents. 

 

 

 
Minitab has two main types of files, projects and worksheets. 

Worksheets are files that are made up of data; think of a spreadsheet 

containing variables of data. Projects are made up of the commands, 

graphs, and worksheets. Every time you save a Minitab project you will 

be saving graphs, worksheets and commands. However each one of the 

elements can be saved individually for use in other documents or Minitab 

projects. Likewise, you can print projects and its elements. 

 
 

1.4.1 Minitab project and Worksheets: 

 
 

Minitab has two main types of files, projects and worksheets. Worksheets 

are files that are made up of data; think of a spreadsheet containing 

variables of data. Projects are made up of commands, worksheets and 

commands. Every time you save a Minitab project, you will be saving 

graphs, worksheets and commands. However each one of the elements can 

be saved individually for use in other documents or Minitab projects. 

Likewise you can print projects and its elements. 

 
 

The Menu bar: You can open menus and choose commands. Here you 

can find the built - in routines. 

 

The Toolbar: Shortcuts to some Minitab commands. 



 

1.4.2 Two windows in Minitab 

 

 

1. Session window: 
 

The area that displays the statistical results of your data 

analysis and can also be used to enter commands. 

 
2. Worksheet window: 

 

A grid of rows and columns used to enter and manipulate 

the data. Note: This area looks like a spreadsheet but will not 

automatically update the columns when entries are changed. 

 

Other windows include, 

 
 

Graph Window: When you generate graphs, each graph is opened in its 

own window. 

Report Window: Version 17 has the report manager that helps you 

organize your results in a report. 

 
Other Windows: History and project manager are other windows. See 

Minitab help for more information on these if needed. 



 
 

 

 
 

 

 

 

Fig 1.11 Minitab worksheet 



 
 

CHAPTER 2 

LITERATURE REVIEW 

 

Zhou et al. [1] investigated on tool life criteria in raw turning. A new tool- 

life criterion depending on a pattern-recognition technique was proposed 

and neural network and wavelet techniques were used to realize the new 

criterion. The experimental results showed that this criterion was 

applicable to tool condition monitoring in a wide range of cutting 

conditions. 

Lin et al. [2] adopted an abdicative network to construct a prediction 

model for surface roughness and cutting force. Once the process 

parameters: cutting speed, feed rate 44 and depth of cut were given; the 

surface roughness and cutting force could be predicted by this network. 

Regression analysis was also adopted as second prediction model for 

surface roughness and cutting force. Comparison was made on the results 

of both models indicating that adductive network was 

Suresh et al. [3] focused on machining mild steel by TiN-coated tungsten 

carbide (CNMG) cutting tools for developing a surface roughness 

prediction model by using Response Surface Methodology (RSM). Genetic 

Algorithms (GA) used to optimize the objective function and compared 

with RSM results. It was observed that GA program provided minimum 

and maximum values of surface roughness and their respective optimal 

machining conditions. 

Lee and Chen [4] highlighted on artificial neural networks (OSRR-ANN) 

using a sensing technique to monitor the effect of vibration produced by 

the motions of the cutting tool and work piece during the cutting process 

developed an on-line surface recognition system. The authors employed 

tri-axial accelerometer for determining the direction of vibration that 

significantly affected surface roughness then analyzed by using a 

statistical method and compared prediction accuracy of both the ANN 

and SMR. 



 
 

Choudhury and Bartarya [5] focused on design of experiments and the 

neural network for prediction of tool wear. The input parameters were 

cutting speed, feed and depth of cut; flank wear, surface finish and 

cutting zone temperature were selected as outputs. Empirical relation 

between different responses and input variables and also through neural 

network (NN) program helped in predictions for all the three response 

variables and compared which method was best for the prediction. 

Chien and Tsai [6] developed a model for the prediction of tool flank wear 

followed by an optimization model for the determination of optimal 

cutting conditions in 45 machining 17-4PH stainless steel. The back- 

propagation neural network (BPN) was used to construct the predictive 

model. The genetic algorithm (GA) was used for model optimization. 

Őzel and Karpat [7] studied for prediction of surface roughness and tool 

flank wear by utilizing the neural network model in comparison with 

regression model. The data set from measured surface roughness and 

tool flank wear were employed to train the neural network models. 

Predictive neural network models were found to be capable of better 

predictions for surface roughness and tool flank wear within the range in 

between they were trained. 

Kohli and Dixit [8] proposed a neural-network-based methodology with 

the acceleration of the radial vibration of the tool holder as feedback. For 

the surface roughness prediction in turning process the back-propagation 

algorithm was used for training the network model. The methodology 

was validated for dry and wet turning of steel using high speed steel and 

carbide tool and observed that the proposed methodology was able to 

make accurate prediction of surface roughness by utilizing small sized 

training and testing datasets. 

Ahmed [9] developed the methodology required for obtaining optimal 
process parameters for prediction of surface roughness in Al turning. For 
development of empirical model nonlinear regression analysis with 
logarithmic data transformation was applied. The developed model 
showed small errors and satisfactory results. The study concluded that 
low feed rate was good to produce reduced surface roughness and also 



the high speed could produce high surface quality within the 
experimental domain. 

Abburi and Dixit [10] developed a knowledge-based system for the 
prediction of surface roughness in turning process. Fuzzy set theory and 
neural networks were utilized for this purpose. The authors developed 
rule for predicting the surface roughness for given process variables as 
well as for the prediction of process variables for a given surface 
roughness. 

Zhong et al. [11] predicted the surface roughness of turned surfaces using 
networks with seven inputs namely tool insert grade, work piece material, 
tool nose radius, rake angle, depth of cut, spindle rate, and feed rate. 

Kumanan et al. [12] proposed the methodology for prediction of 
machining forces using multi-layered perceptron trained by genetic 
algorithm (GA). The data obtained from experimental results of a turning 
process were explored to train the proposed 47 artificial neural networks 
(ANNs) with three inputs to get machining forces as output. The optimal 
ANN weights were obtained using GA search. This function-replacing 
hybrid made of GA and ANN was found computationally efficient as well 
as accurate to predict the machining forces for the input machining 
conditions. 

Thamizhmanii et al. [13] applied Taguchi method for finding out the 

optimal value of surface roughness under optimum cutting condition in 

turning SCM 440 alloy steel. The experiment was designed by using 

Taguchi method and experiments were conducted and results thereof 

were analysed with the help of ANOVA (Analysis of Variance) method. The 

causes of poor surface finish as detected were machine tool vibrations, 

tool chattering whose effects were ignored for analyses. The authors 

concluded that the results obtained by this method would be useful to 

other researches for similar type of study on tool vibrations, cutting forces 

etc. The work concluded that depth of cut was the only significant factor 

which contributed to the surface roughness. 

Natarajan et al. [14] presented the on-line tool wear monitoring 

technique in turning operation. Spindle speed, feed, depth of cut, cutting 

force, spindle-motor power and temperature were selected as the input 

parameters for the monitoring technique. For finding out the extent of 

tool wear; two methods of Hidden Markov Model (HMM) such as the Bar- 

graph Method and the Multiple Modelling Methods were used. A decision 



fusion centre algorithm (DFCA) was used for increasing the reliability of 

this output which combined the outputs of the individual methods to 

make a global decision about the wear status of the tool. Finally, all the 

proposed methods were combined in a DFCA to determine the wear 

status of the tool during the turning operations. 

Ozel et al. [15] carried out finish turning of AISI D2 steels (60 HRC) using 

ceramic wiper (multi-radii) design inserts for surface finish and tool flank 

wear investigation. For prediction of surface roughness and tool flank 

wear multiple linear regression models and neural network models were 

developed. Neural network-based predictions of surface roughness and 

tool flank wear were carried out, compared with a non-training 

experimental data and the results thereof showed that the proposed 

neural network models were efficient to predict tool wear and surface 

roughness patterns for a range of cutting conditions. The study concluded 

that best tool life was obtained in lowest feed rate and lowest cutting 

speed combination. 

Wang and Lan [16] used Orthogonal Array of Taguchi method coupled 

with grey relational analysis considering four parameters viz. speed, 

cutting depth, feed rate, tool nose run off etc. for optimizing three 

responses: surface roughness, tool wear and material removal rate in 

precision turning on an ECOCA-3807 CNC Lathe. The MINITAB software 

was explored to analyse the mean effect of Signal-to-Noise (S/N) ratio to 

achieve the multi-objective features. This study not only proposed an 

optimization approaches using Orthogonal Array and grey relational 

analysis but also contributed a satisfactory technique for improving the 

multiple machining performances in precision CNC turning with profound 

insight. 

Sahoo et al. [17] studied for optimization of machining parameters 

combinations emphasizing on fractal characteristics of surface profile 

generated in CNC turning operation. The authors used L27 Taguchi 

Orthogonal Array design with machining parameters: speed, feed and 

depth of cut on three different work piece materials viz. aluminum, mild 

steel and brass. It was concluded that feed rate was more significant 

influencing surface finish in all three materials. It was observed that in 

case of mild steel and aluminum feed showed some influences while in 

case of brass depth of cut was noticed to impose some influences on 



surface finish. The factorial interaction was responsible for controlling 

the fractal dimensions of surface profile produced in CNC turning. 

Reddy et al. [18] adopted multiple regression model and artificial neural 

network to deal with surface roughness prediction model for machining 

of aluminium alloys by CNC turning. For judging the efficiency and ability 

of the model in surface roughness prediction the authors used the 

percentage deviation and average percentage deviation. 50 The study of 

experimental results showed that the artificial neural network was 

efficient as compared to multiple regression models for the prediction 

of surface roughness. 

Wannas [19] carried out experiments for hard turning of graphitic cast 

iron for the prediction of status of tool wear by using radial basis 

function neural network (RBFNN) model. The RBFNN had three inputs: 

speed, feed and depth of cut and one output: state variable node. The 

error was less as obtained from neural network model than the 

regression model. Lan et al. (2008) considered four cutting parameters: 

speed, feed, depth of cut, and nose runoff varied in three levels for 

predicting the surface roughness of CNC turned product. 

Fu and Hope [20] established an intelligent tool condition monitoring 

system by applying a unique fuzzy neural hybrid pattern recognition 

system. The study concluded that armed with the advanced pattern 

recognition methodology, the established intelligent tool condition 

monitoring system had the advantages of being suitable for different 

machining conditions, robust to noise and tolerant to faults. 

Shetty et al. [21] discussed the use of Taguchi and response surface 

methodologies for minimizing the surface roughness in turning of 

discontinuously reinforced aluminum composites (DRACs) having 

aluminum alloy 6061 as the matrix and containing 15 vol. % of silicon 

carbide particles of mean diameter 25μm under pressured steam jet 

approach. The measured results were then collected and analyzed with 

the help of the commercial software package MINITAB15. The 

experiments were conducted using Taguchi’s experimental design 

technique. The matrix of test conditions included cutting speeds of 45, 

73 and 101 m/min, feed rates of 0.11, 0.18 and 0.25 mm/rev and steam 

pressure 4, 7, 10 bar while the depth of cut was kept constant at 0.5 



mm. The effect of cutting parameters on surface roughness was 

evaluated and the optimum cutting condition for minimizing the surface 

roughness was also determined finally. A secondorder model was 

established between the cutting parameters and surface roughness 

using response surface methodology. The experimental results revealed 

that the most significant machining parameter for surface roughness 

was steam pressure followed by feed. The predicted values and 

measured values were fairly close, which indicated that the developed 

model could be effectively used to predict the surface roughness in the 

machining of DRACs. 



CHAPTER 3 

SURFACE ROUGHNESS 

 

Surface structure and Properties 

Surface roughness is an important measure of product quality since it 

greatly influences the performance of mechanical parts as well as 

production cost. Surface roughness has an impact on the mechanical 

properties like fatigue behaviour, corrosion resistance, creep life, etc. It 

also affects other functional attributes of parts like friction, wear, light 

reflection, heat transmission, lubrication, electrical conductivity, etc. 

Before surface roughness, it is also necessary to discuss about surface 

structure and properties, as they are closely related. 

 

Fig 3.1: Schematic of a Cross section of the surface structure of metals. 
 

 
Upon close examination of the surface of a piece of metal, it can be found 

that it generally consists of several layers. The characteristics of these 

layers are briefly outlined here: 

1. The bulk metal, also known as the metal substrate, has a structure 

that depends on the composition and processing history of the metal. 

2. Above this bulk metal, there is a layer that usually has been 

plastically deformed and work-hardened to a greater extent during the 

manufacturing process. The depth and properties of the work-hardened 

layer (the Surface Structure) depend on such factors as the processing 

method used and how much frictional sliding the surface undergoes. 



For example, if the surface is produced by machining using a dull and 

worn tool, or which takes place under poor cutting conditions, or if the 

surface is ground with a dull grinding wheel, the surface structure layer 

will be relatively thick. 

 
 

3. Unless the metal is processed and kept in an inert (oxygen-free) 

environment, or is a noble metal such as gold or platinum, an oxide layer 

forms over the work-hardened layer. 

4. Under normal environmental conditions, surface oxide layers are 

generally covered with absorbed layers of gas and moisture. Finally, the 

outermost surface of the metal may be covered with contaminants such 

as dirt, dust, grease, lubricant residues, cleaning-compound residues, and 

pollutants from the environment. 

 
 

Thus, surfaces have properties that generally are very difficult from those 

of the substrate. The oxide on a metal surface is generally much harder 

than the base metal. Consequently, oxides tend to be brittle and abrasive. 

This surface characteristic has several important effects on friction, wear, 

and lubrication in materials processing, and on products. 

 
 

3.1 Surface Integrity: 
 

 
Surface integrity is the sum of all the elements that describes all the 

conditions exiting on or at the surface of a work piece. Surface integrity 

has two aspects. The first is surface topography which describes the 

roughness, ‘lay’ or texture of this outermost layer of the work piece, i.e., 

its interface with the environment. The second is surface metallurgy 

which describes the nature of the altered layers below the surface with 

respect to the base of the matrix material. This term assesses the effect 

of manufacturing processes on the properties of the work piece material. 

Figure 1.8 depicts a simulated section showing the various layers between 

the base material and the environment. 



 
 

Surface integrity describes not only the topological (geometric) features 

of surfaces and their physical and chemical properties, but their 

mechanical and metallurgical properties and characteristics as well. 

Surface integrity is an important consideration in manufacturing 

operations because it influences properties, such as fatigue strength, 

resistance to corrosion, and service life. 

3.2 Surface Topography: 

Outermost layers of all machined surfaces display a great number of both 

macro-geometrical and micro-geometrical deviations from the ideal 

geometrical surface. Surface roughness refers to deviation from the 

nominal surface of the third up to sixth order. Order of deviation is 

defined in international standards. First and second-order deviations 

refer to form, i.e. flatness, circularity, etc. and to waviness, respectively, 

and are due to machine tool errors, deformation of the work piece, 

erroneous setups and clamping, vibration and work piece material in 

homogeneities. Third and fourth-order deviations refer to periodic 

grooves, and to cracks and dilapidations, which are connected to the 

shape and condition of the cutting edges, chip formation and process 

kinematics. Fifth and sixth-order deviations refer to work piece material 

structure, which is connected to physical-chemical mechanisms acting on 

a grain and lattice scale (slip, diffusion, oxidation, residual stress, etc.).The 

principal elements of surfaces are discussed below: 

a. Surface: The surface of an object is the boundary which separates that 

object from another substance. Its shape and extent are usually defined 

by a drawing or descriptive specifications. 

b. Profile: It is the contour of any specified section through a surface. 

c. Roughness: It is defined as closely spaced, irregular deviations on a 

scale smaller than that of waviness. Roughness may be superimposed on 

waviness. Roughness is expressed in terms of its height, its width, and its 

distance on the surface along which it is measured. 



d. Waviness: It is a recurrent deviation from a flat surface, much like 

waves on the surface of water. It is measured and described in terms of 

the space between the two corresponding points on the profile. 
 
 

 
Fig 3.2: Surface characteristics 

e. Flaws: Flaws, or defects, are random irregularities, such as scratches, 

cracks, holes, depressions, seams, tears, or inclusions. 

f. Lay: Lay, or directionality, is the direction of the predominant surface 

pattern and is usually visible to the naked eye. 

 

 
3.3 Surface Finish in Machining: 

The resultant roughness produced by a machining process can be thought 

of as the combination of two independent quantities: 

a. Ideal roughness 

b. Natural roughness 

a. Ideal roughness: 

Ideal surface roughness is a function of feed and geometry of the tool. It 

represents the best possible finish which can be obtained for a given tool 

shape and feed. It can be achieved only if the built-up-edge, chatter and 

inaccuracies in the machine tool movements are eliminated completely. 



The surface roughness value is given by, Ra= Rmax/4 

In practice, it is not usually possible to achieve conditions such as those 

described above, and normally the natural surface roughness forms a 

large proportion of the actual roughness. One of the main factors 

contributing to natural roughness is the occurrence of a built-up edge and 

vibration of the machine tool. Thus, larger the built up edge, the rougher 

would be the surface produced, and factors tending to reduce chip-tool 

friction and to eliminate or reduce the built-up edge would give improved 

surface finish industries or within certain countries. For example, the Rk 

family of parameters is used mainly for cylinder bore lining. 

Since these parameters reduce all of the information in a profile to a 

single number, great care must be taken in applying and interpreting 

them. Small changes in how the raw profile data is filtered, how the mean 

line is calculated, and the physics of the measurement can greatly affect 

the calculated parameter. 

By convention every 2D roughness parameter is a capital R followed by 

additional characters in the subscript. The subscript identifies the formula 

that was used, and the R means that the formula was applied to a 2D 

roughness profile. Different capital letters imply that the formula was 

applied to a different profile. For example, Ra is the arithmetic average of 

the roughness profile. 

3.4 Measurement of Surface Roughness: 

Inspection and assessment of surface roughness of machined work pieces 

can be carried out by means of different measurement technique 

These methods can be ranked into the following classes: 
 

 
1. Direct measurement. 

2. Comparison based techniques. 

3. Non-contact methods. 

4. On-process measurement. 



1. Direct measurement methods: 

Direct methods assess surface finish by means of stylus type devices. 

Measurements are obtained using a stylus drawn along the surface to be 

measured. The stylus motion perpendicular to the surface is registered. 

This registered profile is then used to calculate the roughness 

parameters. This method requires interruption of the machine process, 

and the sharp diamond stylus can make micro-scratches on surfaces. 

One example of this is the Brown and Sharpe Surfcom unit. 

Basically, this technique uses a stylus that tracks small changes in surface 

height, and a skid that follows large changes in surface height. The use of 

the two together reduces the effects of non-flat surfaces on the surface 

roughness measurement. The relative motion between the skid and the 

stylus is measured with a magnetic circuit and induction coils. 

The actual apparatus uses the apparatus hooked to other 

instrumentation. The induction coils drive amplifiers conditioning 

hardware, and other signal. The then amplified signal is used to drive a 

recorder that shows stylus position, and a digital readout that displays the 

CLA/Ra value. 

The paper chart that is recorded is magnified in height by 100000:1, and 

in length by 82: 1 to make the scale suitable to the human eye. The datum 

that the stylus position should be compared to can be one of three, 

 

 
a. Skid - can be used for regular frequency roughness 

b. Shoe - can be used for irregular frequency roughness 

c. Independent - can use an optical flat 



 
 

Fig 3.3: Flat shoe – used for surfaces with irregular frequencies. 
 

 
2. Comparison based techniques: 

Comparison techniques use specimens of surface roughness produced by 

the same process, material and machining parameters as the surface to 

be compared. Visual and tactile sensors are used to compare a specimen 

with a surface of known surface finish. Because of the subjective 

judgment involved, this method is useful for surface roughness Rq>1.6 

micron. 

3. Non-contact methods: 

There have been some works done to attempt to measure surface 

roughness using noncontact technique. Here is an electronic speckle 

correlation method given as an example. When coherent light illuminates 

a rough surface, the diffracted waves from each point of the surface 

mutually interfere to form a pattern which appears as a grain pattern of 

bright and dark regions. The spatial statistical properties of this speckle 

image can be related to the surface characteristics. The degree of 

correlation of two speckle patterns produced from the same surface by 

two different illumination beams can be used as a roughness parameter. 

Monochromatic plane wave with an angle of incidence with respect to 

the normal to the surface; multi-scattering and shadowing effects are 

neglected. The photo-sensor of a CCD camera placed in the focal plane of 

a Fourier lens is used for recording speckle patterns. Assuming Cartesian 

coordinates x,y,z, a rough surface can be represented by its ordinates Z 

(x,y) with respect to an arbitrary datum plane having transverse 



coordinates (x,y,z) then the RMS value of surface roughness can be 

defined and calculated. 

 

 
a. Inductance method: An inductance pickup is used to measure the 

distance between the surface and the pickup. This measurement gives a 

parametric value that may be used to give a comparative roughness. 

However, this method is limited to measuring magnetic materials. 

b. Ultrasound: A spherically focused ultrasonic sensor is positioned 

with a non-normal incidence angle above the surface. The sensor sends 

out an ultrasonic pulse to the personal computer for analysis and 

calculation of roughness parameters. 



CHAPTER 4 

DESIGN OF EXPERIMENTS 

 

DOE (design of experiments) helps you investigate the effects of input 

variables (factors) on an output variable (response) at the same time. These 

experiments consist of a series of runs, or tests, in which purposeful changes 

are made to the input variables. Data are collected at each run. You use DOE 

to identify the process conditions and product components that affect the 

quality and then determine the factor settings that optimize results. 

Minitab offers five types of designs: screening designs, factorial designs, 

response surface designs, mixture designs, and Taguchi designs (also called 

Taguchi robust designs). The steps you follow in Minitab to create, analyze, 

and visualize a designed experiment are similar for all types. After you 

perform the experiment and enter the results, Minitab provides several 

analytical tools and graph tools to help you understand the results. This 

chapter demonstrates the typical steps to create and analyze a factorial design. 

You can apply these steps to any design that you create in Minitab. 

Minitab DOE commands include the following features: 

 
 Catalogues of designed experiments to help you create a design 

 

 Automatic creation and storage of your design after you specify its 

properties 

 Display and storage diagnostic statistics to help you interpret the results 
 

 Graphs to help you interpret and present the results. 



4.1 DOE Overview: 
 

In industry, designed experiments can be used to systematically 

investigate the process or product variables that influence product quality. 

After identifying the process conditions and product components that 

influence product quality, direct improvement efforts enhance a product’s 

manufacturability, reliability, quality, and field performance. As the resources 

are limited, it is very important to get the most information from each 

experiment performed. Well-designed experiments can produce significantly 

more information and often require fewer runs than haphazard or unplanned 

experiments. A well-designed experiment identifies the important effects. If 

there is an interaction between two or more input variables, they should be 

included in the design rather than doing a "one factor at a time" experiment. 

An interaction occurs when the effect of one input variable is influenced by 

the level of another input variable. 

Designed experiments are often carried out in four phases: planning, 

screening (also called process characterization), optimization, and 

verification. 

4.1.1 Planning: 

 

Careful planning helps in avoiding the problems that can occur during 

the execution of the experimental plan. For example, personnel, equipment 

availability, funding, and the mechanical aspects of the system may affect the 

ability to complete the experiment. The preparation required before beginning 

experimentation depends on the problem. Here are some steps that need to go 

through: 



• Define the problem: Developing a good problem statement helps in 

studying the right variables. 

• Define the objective: A well-defined objective will ensure that the 

experiment answers the right questions and yields practical, usable 

information. At this step, define the goals of the experiment. 

• Develop an experimental plan that will provide meaningful 

information: 

Review relevant background information, such as theoretical 

principles, and knowledge gained through observation or previous 

experimentation. 

• Make sure the process and measurement systems are in control: 

Ideally, both the process and the measurements should be in 

statistical control as measured by a functional statistical process control (SPC) 

system. 

Minitab provides numerous tools to evaluate process control and analyse 

your measurement system. 

4.1.2 Screening: 

 

In many process development and manufacturing applications, 

potentially influential variables are numerous. Screening reduces the number 

of variables by identifying the key variables that affect product quality. This 

reduction allows focusing process improvement efforts on the really 

important variables. Screening suggests the “best" optimal settings for these 

factors. 

The following methods are often used for screening: 

 

• Two-level full and fractional factorial designs are used extensively in 

industry. 



• Plackett-Burman designs have low resolution, but they are useful in some 

screening experimentation and robustness testing. 

• General full factorial designs (designs with more than two levels) may also 

be useful for small screening experiments. 

4.1.3 Optimization: 

 

After identifying the vital variables by screening, there is a need to 

determine the "best" or optimal values for these experimental factors. Optimal 

factor values depend on the process objective. 

The optimization methods available in Minitab include general full 

factorial designs (designs with more than two levels), response surface 

designs, mixture designs, and Taguchi designs. 

• Factorial Designs Overview describes methods for designing and analyzing 

general full factorial designs. 

• Response Surface Designs Overview describes methods for designing and 

analysing central composite and Box-Behnken designs. 

• Mixture Designs Overview describes methods for designing and analyzing 

simplex centroid, simplex lattice, and extreme vertices designs. Mixture 

designs are a special class of response surface designs where the proportions 

of the components (factors), rather than their magnitude, are important. 

• Response Optimization describes methods for optimizing multiple 

responses. Minitab provides numerical optimization, an interactive graph, and 

an overlaid contour plot to help to determine the "best" settings to 

simultaneously optimize multiple responses. 

• Taguchi Designs Overview describes methods for analyzing Taguchi 

designs. Taguchi designs may also be called orthogonal array designs, robust 

designs, or inner-outer array designs. These designs are used for creating 

products that are robust to conditions in their expected operating environment. 



4.1.4 Verification: 

 

Verification involves performing a follow-up experiment at the 

predicted "best" processing conditions to confirm the optimization results. 

4.2 Advantages & Disadvantages of DOE: 

 

DOE became a more widely used modelling technique superseding its 

predecessor one-factor-at-time (OFAT) technique. One of the main 

advantages of DOE is that it shows the relationship between parameters and 

responses. In other words, DOE shows the interaction between variables 

which in turn allows us to focus on controlling important parameters to obtain 

the best responses. DOE also can provide us with the most optimal set of 

parametric values to find the best possible output characteristics. Besides that, 

the mathematical model generated can be used as a prediction model which 

can predict the possible output response based on the input values. Another 

main reason DOE is used because it saves time and cost in terms of 

experimentation. 

DOE functions in such a manner that the number of experiments or the 

number of runs is determined before the actual experimentation is done. This 

way, time and cost can be saved as we do not have to repeat unnecessary 

experiment runs. Most usually, experiments will have errors occurring. Some 

of them might be predictable while some errors are just out of control. DOE 

allows us to handle these errors while continuing with the analysis. DOE is 

excellent when it comes to predicting linear behaviour. However, when it 

comes to nonlinear behaviour, DOE does not always give the best results. 



CHAPTER – 5 

EXPERIMENTAL SETUP 

5.1 TAGUCHI DESIGN: 

 

The technique of laying out the conditions of experiments involving 

multiple factors was first proposed by the Englishman, Sir R. A. Fisher. The 

method is popularly known as the factorial design of experiments. A full factorial 

design will identify all possible combinations for a given set of factors. Since 

most industrial experiments usually involve a significant number of factors, a full 

factorial design results in a large number of experiments. To reduce the number 

of experiments to a practical level, only a small set from all the possibilities is 

selected. The method of selecting a limited number of experiments that produce 

the most information is known as a partial fraction experiment. Although this 

method is well known, there are no general guidelines for its application or the 

analysis of the results obtained by performing the experiments. 

Taguchi constructed a special set of general design guidelines for factorial 

experiments that cover many applications. Taguchi has envisaged a new method 

of conducting the design of experiments that are based on well-defined 

guidelines. This method uses a special set of arrays called orthogonal arrays. 

These standard arrays stipulate the way of conducting the minimal number of 

experiments which could give the full information of all the factors that affect the 

performance parameter. The crux of the orthogonal arrays method lies in 

choosing the level combinations of the input design variables for each 

experiment. 

While there are many standard orthogonal arrays available, each of the arrays is 

meant for a specific number of independent design variables and levels. For 

example, if one wants to experiment to understand the influence of 3 different 



independent variables with each variable having 3 set values (level values), then 

an L9 orthogonal array might be the right choice. The L9 orthogonal array is 

meant for understanding the effect of 3 independent factors each having 3-factor 

level values. This array assumes that there is no interaction between any two 

factors. 

The orthogonal arrays have the following special properties that reduce the 

number of experiments to be conducted. 

I. The vertical column under each independent variable of the above 

table has a special combination of level settings. All the level 

settings appear an equal number of times. For L9 array under feed 

rate, level 1, level 2 and level 3 appear thrice. This is called the 

balancing property of orthogonal arrays. 

II. All the level values of independent variables are used for conducting 

the experiments. 

III. The sequence of level values for conducting the experiments shall 

not be changed. This means one cannot experiment 1 with variable 

1, level 2 setup, and experiment 4 with variable 1, level 1 setup. The 

reason for this is that the array of each factor column is mutually 

orthogonal to any other column of level values. The inner product of 

vectors corresponding to weights is zero. 

 
 

5.1 Material Specification: 

The composition of AA 6063 T6 is 0.6 wt.% Si, 0.34 wt.% Fe, 0.09 wt.% Cu, 

0.09 wt.% Mn, 0.88 wt.% Mg, 0.092 wt.% Cr, 0.095 wt.% Zn, 0.092 wt.% Ti, 

97.721 wt.% Al. 

This alloy is widely used in the manufacturing of doors, extrusions, window 

frames, and irrigation tubing. CNC lathe was used for machining. The tool used 

is an uncoated carbide insert tool. 



 
 

 

The specification of the cutting tool is DCGT 11 T3 04. The surface roughness 

was measured using the Surf order SE 1200, Surface profilometer. The machining 

was done under dry-cutting conditions. 

 
5.2 Experimental Work: 

Taguchi’s L9 orthogonal array was used to design the experiments with three 

factors and three levels. Experiments were conducted based on Taguchi’s method 

which is a powerful tool used in the design of experiments. Taguchi advocates 

the use of orthogonal array designs to assign the factors chosen for the 

experiment. The advantage of the Taguchi method is that it uses a special design 

of orthogonal arrays to study the entire parameter space with only a small number 

of experiments. Compared to the conventional approach of experimentation, this 

method reduces drastically the number of experiments that are required to model 

the response functions . The assignment of the levels to the factors and the various 



parameters used are given in Table(1). The experimental results for L9 orthogonal 

array are given in Table(2). 

 
 

Machining Parameters 

S.No Factors Symbol Level 1 Level 2 Level 3 

1 Spindle Speed (rpm) N 2000 3500 5000 

2 Feed Rate (mm/rev) F 0.05 0.075 0.1 

3 Depth of Cut (mm) D 0.1 0.15 0.2 

Table (1) 
 
 

Design of Experiments 

S. No N F d Ra MRR 

1 2000 0.05 0.1 0.380 0.2123 

2 2000 0.075 0.15 0.360 0.4302 

3 2000 0.1 0.2 0.535 0.6872 

4 3500 0.05 0.15 0.388 0.3865 

5 3500 0.075 0.2 0.509 0.6872 

6 3500 0.1 0.1 0.533 0.5208 

7 5000 0.05 0.2 0.459 0.5821 

8 5000 0.075 0.1 0.469 0.4899 

9 5000 0.1 0.15 0.556 0.8531 

Table (2) 



CHAPTER 6 

RESULTS AND GRAPHS 

 
6.1 Multi-Response Optimization Using GRA: 

Taguchi's experimental method is adequate to determine the optimal setting 

of process parameters for a single response characteristic. In the case of two or 

more responses, with dissimilar quality characteristics, multi-response 

optimization using GRA is the preferred method. Grey analysis can also be 

utilized to determine the similarity between seemingly irregular finite data [ ]. 

Hence, multi-response optimization of wear parameters in this study is 

performed using the following steps in GRA. 

6.1.1 Grey-Relational Generation 

In GRA, when the standard value and reference sequence range are 

considerably high, the function of the factors is neglected. Additionally, if the 

goals and directions of factors are disparate, GRA may yield inaccurate results. 

Hence, data pre-processing is performed to normalize the original reference 

sequences to a comparable sequence within the range of zero to one [ ]. This 

approach of pre-processing data by normalization, into a group of sequences, is 

termed grey relational generation. To pre-process data using GRA, the response 

of the transformed sequences can be grouped into two quality characteristics, 

namely, larger-the-better or smaller-the-better. 

For smaller-the-better characteristic, the sequence can be normalized using 

Equation (1): 

𝑥∗(𝑘) = 
𝑚𝑎𝑥𝑦𝑖(𝑘)−𝑦𝑖(𝑘) (1) 

𝑖 𝑚𝑎𝑥𝑦𝑖(𝑘)−𝑚𝑖𝑛𝑦𝑖(𝑘) 
 

For Higher-the-Better (HB) criterion, the normalized data can be expressed as: 



𝑖 

 

 
 

 

𝑥∗(k) denotes the reference sequence after pre-processing for the 𝑖th 

experiment and 𝑦𝑖(k) represents the initial sequence of the mean of the 

responses. 

6.1.2 Computation of Grey Relational Coefficient and Grade 

Once the sequence is normalized, the next step is to calculate the deviation 

sequence of the reference sequence using Equation (2): 

Δ0𝑖(𝑘) = |𝑥∗(𝑘) − 𝑥∗(𝑘)| (2) 
0 𝑖 

 

where Δ0𝑖(k), 𝑥∗(k) and 𝑥∗(k) refer to the deviation, reference, and 
0 𝑖 

comparability sequences, respectively. The grey relational coefficient (GRC) is 

then determined using Equation (3): 

𝜉𝑖 (𝑘) =  
Δ𝑚𝑖𝑛+𝜁Δ𝑚𝑎𝑥 

Δ0𝑖(𝑘)+𝜁Δ𝑚𝑎𝑥 
(3) 

 

where,𝜉𝑖(𝑘) signifies the GRC of individual response variables computed as a 

function of Δ𝑚𝑖𝑛and Δ𝑚𝑎𝑥 , the minimum and maximum deviations of each 

response variable. The distinguishing or identification coefficient represented 

by 𝜁, defined in the range 𝜁 ∈ [ ], is generally set at 0.5 to allocate equal 

weights to every parameter. As shown in Equation (4), a composite grey 

relational grade (GRG), is then computed by averaging the GRC of each 

response variable: 

𝛾 = 
1 

∑𝑛 𝜉 (𝑘) (4) 
 

𝑖 𝑛 𝑖=1  𝑖 
 

where 𝛾𝑖 represents the value of GRG determined for the ith experiment, n 

being the aggregate count of performance characteristics. 



 

 
Experiment 

Nos 

 

 
Normalization 

 

 
Deviation Sequence 

 

Grey Relational 
Coefficient -GRC 

 

 
Grey Relational 

Grade -GRG 

 

 
Rank 
Order  

 
Ra 

 

 
MRR 

 

 
Ra 

 

 
MRR 

 

 
Ra 

 

 
MRR 

 

 
1 

 

 
0.89796 

 

 
0.00000 

 

 
0.10204 

 

 
1.00000 

 

 
0.83051 

 

 
0.33333 

 

 
0.58192 

 

 
4 

 

 
2 

 

 
1.00000 

 

 
0.34004 

 

 
0.00000 

 

 
0.65996 

 

 
1.00000 

 

 
0.43105 

 

 
0.71553 

 

 
1 

 

 
3 

 

 
0.10714 

 

 
0.74110 

 

 
0.89286 

 

 
0.25890 

 

 
0.35897 

 

 
0.65885 

 

 
0.50891 

 

 
7 

 

 
4 

 

 
0.85714 

 

 
0.27185 

 

 
0.14286 

 

 
0.72815 

 

 
0.77778 

 

 
0.40712 

 

 
0.59245 

 

 
3 

 

 
5 

 

 
0.23980 

 

 
0.74110 

 

 
0.76020 

 

 
0.25890 

 

 
0.39676 

 

 
0.65885 

 

 
0.52781 

 

 
5 

 

 
6 

 

 
0.11735 

 

 
0.48143 

 

 
0.88265 

 

 
0.51857 

 

 
0.36162 

 

 
0.49088 

 

 
0.42625 

 

 
9 

 

 
7 

 

 
0.49490 

 

 
0.57709 

 

 
0.50510 

 

 
0.42291 

 

 
0.49746 

 

 
0.54177 

 

 
0.51961 

 

 
6 

 

 
8 

 

 
0.44388 

 

 
0.43321 

 

 
0.55612 

 

 
0.56679 

 

 
0.47343 

 

 
0.46870 

 

 
0.47106 

 

 
8 

 

 
9 

 

 
0.00000 

 

 
1.00000 

 

 
1.00000 

 

 
0.00000 

 

 
0.33333 

 

 
1.00000 

 

 
0.66667 

 

 
2 

 
 

 
 

Table(3) 

 

An order of 1 is allotted to the greatest grey relational grade. Grey relational 

grades are calculated using Eq. (4) and grey relational order was figured out in 

the table(3). From table(2), we come to know that the control parameter’s 

setting of 2(experiment 2) had the greatest grey relational grade and this 

indicates that experiment 2 was the optimal turning factor setting for minimum 

surface roughness and MRR simultaneously among the chosen nine 



𝑦 

experiments. The larger better S/N quality characteristics were considered for 

the grey relational grade since higher multiple performance characteristics are 

our target. The level of a parameter with the highest S/N ratio gives the optimal 

level. So the optimal process parameter setting for the multiple performance 

characteristics was N1f2d2. The main effects plot for mean for GRG is shown 

in Fig 1. and the main effects plot for S/N ratio for GRG is shown in Fig 2. 

 
6.1.3 S/N Ratios in the Taguchi Method: 

The Taguchi method employs orthogonal arrays to reduce variance and 

optimize process parameters. In the Taguchi method, the signal to noise (S/ N) 

ratio is used as a performance characteristic to measure process robustness and to 

evaluate deviation from desired values . The S/ N ratio, a logarithmic function, is 

computed by assessing the proportion of signal (mean) to the noise (standard 

deviation). To diminish noise and the effects of uncontrollable factors, higher 

values of S/ N ratios are preferred . High S/ N ratios indicate the improved quality 

of the product. There exist three types of S/ N ratios, namely, higher-the-better, 

nominal-the-best, and smaller-the-better as shown in Equations (5)−(7): 

 

(
𝑆 

) = −10 ∗ log (
1 

∑𝑛 
 

1 ) -(5) 
 

𝑁 𝐻𝑇𝐵 
10    𝑛 𝑖=1   2 

𝑖 

 

(
𝑆 

) = −10 ∗ log (
1 

∑𝑛 𝑦2) -(6) 
𝑁 𝑁𝑇𝐵 

10    𝑛 𝑖=1    𝑖 

 

(
𝑆 

) = −10 ∗ log (
1 

∑𝑛 𝑦2) -(7) 
𝑁  𝑆𝑇𝐵 

10    𝑛 𝑖=1    𝑖 

 

where n is the number of experiments, 𝑦𝑖  represents the response value of the 

𝑖th experiment in the OA, 𝑦̅̅2̅ indicates the mean, and 𝑠2 the variance of the 

observed data. 



𝑎𝑑𝑗 

𝑎𝑑𝑗 

𝑎𝑑𝑗 

6.1.4 Analysis of Variance (ANOVA): 

ANOVA is conventionally used to investigate whether the experimental 

design parameters have a significant effect on the responses. The ANOVA table 

is also widely used to analyze the interactions between factors and the effect of 

such interactions on the dependent variables [ ]. Generally, the F-test is employed 

as a measure to evaluate the extent of factors controlling the test results. For a 

95% confidence level, if the value of 'Prob > F', commonly known as 'p-value', is 

less than 0.05, the factors and interactions are considered significant [ ]. 

Additionally, a large F-value is an indication of a process parameter having a 

significant effect on the performance characteristic. In ANOVA, the adjusted 

correlation coefficient,𝑅2     , is used to evaluate the validity of the fitted model. 

𝑅2 measures the percentage of variation explained exclusively by those 

independent factors and interactions which predominantly affect the response 

variables. Further, to conclude that the created models fit the performed 

experiments well, it is desired that the values of R2 and 𝑅2   should be high and 

close to each other. 

 

Response Table for Means 

Level N F D 

1 0.6021 0.5647 0.4931 

2 0.5155 0.5715 0.6582 

3 0.5524 0.5339 0.5188 

Delta 0.0866 0.0375 0.1651 

Rank 2 3 1 

Table (4) 

Average mean = 0.55669 

 
 

This table provides the order of most influencing factor in determining the 

multiple performance characteristics or Grey relational Grade. 



The Depth of cut is the 1st influencing factor which has highest mean of GRG 

at Level-2. So the depth of cut has Rank 1 in the above table. 

The Spindle speed is the 2nd most influencing factor which has highest mean 

of GRG at Level-1. So the spindle speed has Rank 2 in the above table. 

The Feed rate is the 3rd most influencing factor which has highest mean of 

GRG at Level-2. So the feed rate has Rank 3 in the above table. 

The main effects plot for mean for GRG is shown in Fig 1 
 

 
 

Fig 1. 

The main effects plot for GRG for Data Means was created in MiniTab 

for each value of a categorical variable. A line connects the points for each 

variable. Look at the line to determine whether a main effect is present for a 

categorical variable. 

Minitab also draws a reference line at the overall mean. Interpret the line that 

connects the means as follows: 



 When the line is horizontal (parallel to the x-axis), there is no main effect 

present. The response mean is the same across all factor levels. 

 When the line is not horizontal, there is a main effect present. The response 

mean is not the same across all factor levels. The steeper the slope of the 

line, the greater the magnitude of the main effect. 

 

 
Response Table for Signal to Noise Ratios: 

 
Larger is better 

 

Level N F D 

1 -4.492 -4.979 -6.216 

2 -5.835 -4.999 -3.659 

3 -5.249 -5.599 -5.701 

Delta 1.342 0.620 2.557 

Rank 2 3 1 

Table (5) 

 

 
The Response Table for Signal-to-Noise Ratios contains a row for the 

average signal-to-noise ratio for each factor level, Delta, and Rank. The table 

contains a column for each factor. 

The Response Table for Standard Deviations contains a row for the average 

signal-to-noise ratio for each factor level, Delta, and Rank. The table contains a 

column for each factor. 

Delta is the difference between the maximum and minimum average 

response (signal-to-noise ratio or standard deviation) for the factor. 

The Rank is the rank of each Delta, where Rank 1 is the largest Delta. 



The larger, better S/N quality characteristics was considered for grey 

relational grade, since higher multiple performance characteristics is our target. 

The level of a parameter with the highest S/N ratio gives the optimal level. 

The main effects plot for S/N ratio for GRG is shown in Fig 2. 
 

 

 
 

Fig 2. 

In these results, the main effects plot for S/N ratio indicates that Depth of Cut has 

the largest effect on the signal-to-noise ratio. On average, experimental runs with 

depth of cut at level 2 had much higher signal-to-noise ratios than experimental 

runs with depth of cut at level 1 & 3. Feed Rate had a small effect or no effect on 

the signal-to-noise ratio. 

6.1.5 Characteristics of ANOVA: 

 

ANOVA is used in the analysis of comparative experiments, those in which 

only the difference in outcomes is of interest. The statistical significance of the 

experiment is determined by a ratio of two variances. This ratio is independent of 



several possible alterations to the experimental observations: Adding a constant 

to all observations does not alter significance. Multiplying all observations by a 

constant does not alter significance. So ANOVA statistical significance results 

are independent of constant bias and scaling errors as wel0l as the units used in 

expressing observations. 

6.2. MATHEMATICAL MODELING 

 

6.2.1. Linear Regression equation: 

 

y = β0 + β1 X1 + β2 X2 + .................. + βkXk 

 

6.2.2. Multiple linear regression equation: 

 

Multiple linear regression equation is a second-order polynomial equation of the 

form – 

 

 
Where, 

 

Y is the corresponding response 

 

(1,2, ..... , S) are coded levels of S quantitative process variables. 

 

The terms are the second-order regression coefficients. 

The second term is attributable to the linear effect. 

The third term corresponds to the higher-order effects. 

The fourth term includes the interactive effects. 

The last term indicates the experimental error. 



6.3. TERMS & GRAPHS USED 

 

6.3.1. Regression table 

1.Adj SS: 

Adj SS. Adjusted sums of squares are measures of variation for 

different components of the model ..... The error sum of squares is the sum of the 

squared residuals. It quantifies the variation in the data that the predictors do not 

explain. 

2.Adj MS: 

 

Adj MS. Adjusted mean squares measure how much variation a term or 

a model explains, assuming that all other terms are in the model, regardless of 

the order they were entered. Unlike the adjusted sums of squares, 

the adjusted mean squares consider the degrees of freedom. 

 

3.F-values: 

 

The F value in one-way ANOVA is a tool to help you answer the 

question “Is the variance between the means of two populations significantly 

different?” The F value in the ANOVA test also determines the P-value; The P- 

value is the probability of getting a result at least as extreme as the one that was 

observed, given that the null hypothesis is true. 

4. P-values 

 

P-values (P) are used to determine which of the effects in the model are 

statistically significant. 

 If the p-value is less than or equal to α (0.05), conclude that the effect is 

significant. 

 If the p-value is greater than α, conclude that the effect is not significant. 

 

5. Coefficients 

https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/anova/#OneWayANOVA
https://www.statisticshowto.com/probability-and-statistics/variance/
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/mean-median-mode/#mean
https://www.statisticshowto.com/what-is-statistical-significance/
https://www.statisticshowto.com/what-is-statistical-significance/
https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/anova/
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/p-value/
https://www.statisticshowto.com/probability-and-statistics/null-hypothesis/


Coefficients are used to construct an equation representing the relationship 

between the response and the factors. 

6. R-squared 

 

R and adjusted R represent the proportion of variation in the response that 

is explained by the model. 

 R (R-Sq) describes the amount of variation in the observed responses that 

is explained 0by the model. 

 Predicted R reflects how well the model will predict future data. 

 Adjusted R is a modified R that has been adjusted for the number of terms 

in the model. If we include unnecessary terms, R can be artificially high. 

Unlike R , adjusted R may get smaller when we add terms to the model. 

4. Analysis of variance table 

 

P-values (P) are used in the analysis of variance tables to determine which 

of the effects in the model are statistically significant. The interaction effects in 

the model are observed first because a significant interaction will influence the 

main effects. 

5. Estimated coefficients using uncoded units 

 

Minitab displays the coefficients in uncoded units in addition to coded 

units if the two units differ. 

For each term in the model, there is a coefficient. These coefficients are 

useful to construct an equation representing the relationship between the response 

and the factors. 



Source DF Adj SS Adj MS F-Value P-Value 
Percentage 

Contribution(%) 

N 2 0.011335 0.005667 1.63 0.0381 16.65 

F 2 0.002398 0.001199 0.34 0.0744 3.52 

D 2 0.047372 0.023686 6.79 0.0128 69.58 

Error 2 0.006972 0.003486    

Total 8 0.068076     

 

 

Table (6) 

 

Thus, the finest combination values for maximizing the multiple performance 

characteristics or grey relational grade (GRG) were spindle speed of 2000 rpm, 

feed rate of 0.05 mm/rev, and depth of cut of 0.15 mm. The response table for the 

means of grey relational grade is shown in Table (4). The response table for the 

S/N ratios of grey relational grade is shown in Table (5).ANOVA output of the 

multiple performance characteristics is given in Table (6). From the analysis of 

this table, it could be concluded that depth of cut, spindle speed followed by feed 

rate, and, are significantly affecting the grey relational grade. 

 

6.3.2. Graphs 

 

1. Normal Probability Plot 

 

Graph is plotted between the residuals versus their expected values when 

the distribution is normal. The residuals from the analysis should be normally 

distributed. In practice, for balanced or nearly balanced designs or data with a 

large number of observations, moderate departures from normality do not 

seriously affect the results. The normal probability plot of the residuals should 

roughly follow a straight line. 



 

 
 

 

 
 

2. Residuals versus fits 

 

Graph is plotted between the residuals versus the fitted values. The 

residuals should be scattered randomly about zero. 

 



 

6.4 Results of Confirmation Experiment for GRG : 

The purpose of this confirmation experiment is to verify the 

improvement in the quality characteristics. 

After the optimal level has been selected, one could predict the optimum 

response using the following equation: 

𝛾𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝛾𝑚 
𝑞 
𝑖=1 𝛾0 − 𝛾𝑚 

 

where 𝛾𝑚 is the total mean S/N ratio, 𝛾0 is the mean S/N ratio at optimal level, 

n is the number of main design parameters that affect the quality characteristics. 

Based on the Eq. ( ) the grey relational grade (GRG) is predicted for the 

optimal combination of parameters (N1-f2-d2) and its value is 0.7184. Lastly 

confirmation test was conducted using the optimum combination of parameters 

(N1-f2-d2). Table ( ). shows the comparison of predicted multiple performance 

characteristics (GRG) with the actual one. The grey relational grade for the 

confirmation experiment is found to be 0.7640. 

 

 

 

 Initial Cutting Parameters Optimal Cutting Parameters 

Level N1 f1 d1 
N1 f2 d2 

Prediction Experiment 

GRG 0.5819 0.7184 0.7640 

S/N Ratio -5.229 -2.76601 -2.4271 

 

 
The results of confirmation experiment has done for different level of cutting 

parameters which are Initial and Optimal Cutting parameters. 

+ ∑ 



The initial cutting parameters are taken as N1f1d1 which is the 1st experiment 

conditions and Optimal cutting parameters are taken as N1f2d2 which is the 

optimal process parameter setting for the multiple performance characteristic. 

The Prediction value of GRG and S/N ratio are 0.7184 and -2.76601 respectively 

with the lower spindle speed of 2000 rpm, lower feed rate of 0.05 mm/rev and 

medium depth of cut of 0.15 mm with the estimated multiple performance 

characteristics (GRG). 

The Experimental value of GRG and S/N ratio are 0.7640 and -2.4271 

respectively of parameter setting N1f2d2. 

The percentage of error between the predicted and experimental values of the 

multiple performance characteristics during the confirmation experiments is 

almost within 5.96%. So, we can say the improvement in quality characteristics 

has been verified by confirmation experiment. 

The improvement in the S/N ratio from the initial cutting parameters to the 

optimal   cutting    parameters    is    calculated    by    difference    of    them, 

i.e., 5.229 - 2.4271 = 2.8019 db for GRG. 



 

6.5 Conclusions 

The surface roughness (Ra) and material removal rate (MRR) were measured 

under different cutting conditions for diverse combinations of machining 

parameters. The conclusions arrived, at the end of this work are as follows: 

1. From this analysis, it is revealed that depth of cut and spindle speeds are 

prominent factors that affect the turning of aluminium alloy. The depth of 

cut (p=69.58%) is the most influencing factor in determining the multiple 

performance characteristics or grey relational grade (GRG) followed by 

spindle speed (p=16.65%) and feed rate (p=3.52%). 

2. The best multiple performance characteristics were obtained with an 

uncoated carbide insert when turning aluminium alloy with the lower 

spindle speed of 2000 rpm, lower feed rate of 0.05 mm/rev, and medium 

depth of cut of 0.15 mm with the estimated multiple performance 

characteristics (GRG) of 0.7184. The experimental value of GRG for this 

combination of parameters is 0.7640. 

3. The percentage of error between the predicted and experimental values of 

the multiple performance characteristics during the confirmation 

experiments is almost within 5.96%. 

4. The improvement in the S/N ratio from the initial cutting parameters to the 

optimal cutting parameters is 2.8019 db. for GRG. 

5. The value of multiple performance characteristics obtained from 

confirmation experiment is within the 95% confidence interval of the 

predicted optimum condition. 
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