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ABSTRACT

Sheet metal forming is widely used in automotive and aerospace sector. This
project shows the analysis of sheet metal forming process mainly deep drawing.
ANSYS simulation is used to carry out the results of difficult behaviour of the
product. Main purpose of this project is to perform the static analysis on the deep
drawing operation and to find the stresses, strains and total deformation. From
theoretical values the dimensions of die and punch are obtained. Using these
dimensions the CAD model is generated in CATIA. This assembly is then converted
into .stp format and imported in ANSYS. The force required to develop the part,
deformation and defect like tearing, wrinkles etc. can be obtained through simulation.
By using this method it is easy to make stress and strain analysis for different

materials
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CHAPTER- 1
INTRODUCTION

1.1 METAL FORMING PROCESSES

Metal forming: Large set of manufacturing processes in which the material is
deformed plastically to take the shape of the die geometry. The tools used for such
deformation are called die,punch etc. depending on the type of process.

Plastic deformation: Stresses beyond yield strength of the workpiece material is
required.

Categories: Bulk metal forming, Sheet metal forming stretching

Ralling
Processas

Bulk 1 Forging
deformation Processes

Extrusion
PrOEs Ses

Wire and bar

hMetal forming |— e drawing

Bending
opaerabions

stretching

L Sheeat Deap or cup
matalworking drawing

Sheanng
Processes

MMiscellanaous
Processeas

Fig 1.1 Classification of metal forming process



1.1.1 Classification of basic bulk forming processes

Classification of basic bulk forming processes

Forging

Rolling

Fig 1.2 Classification of Bulk forming processes
Bulk forming: It is a severe deformation process resulting in massive shape change.
The surface area-to-volume of the work is relatively small. Mostly done in hot
working conditions
Rolling: In this process, the workpiece in the form of slab or plate is compressed
between two rotating rolls in the thickness direction, so that the thickness is reduced.
The rotating rolls draw the slab into the gap and compresses it. The final product is in
the form of sheet.
Forging: The workpiece is compressed between two dies containing shaped contours.
The die shapes are imparted into the final part.
Extrusion: In this, the workpiece is compressed or pushed into the die opening to
take the shape of the die hole as its cross section.
Wire or Rod drawing: similar to extrusion, except that the workpiece is pulled

through the die opening to take the cross-section

1.1.2 Classification of basic sheet forming processes

Classification of basic sheet forming processes

Y Blank haold
2l il = Punch —-»

Sheaning action —._
A

Work ——

Die

Bending Deep drawing shearing

Fig 1.3 Classification of sheet forming processes




Sheet forming: Sheet metal forming involves forming and cutting operations
performed on metal sheets, strips, and coils. The surface area-to-volume ratio of the
starting metal is relatively high. Tools include punch, die that are used to deform the
sheets.

Bending: In this, the sheet material is strained by punch to give a bend shape (angle
shape) usually in a straight axis.

Deep (or cup) drawing: In this operation, forming of a flat metal sheet into a hollow
or concave shape like a cup, is performed by stretching the metal in some regions. A
blank-holder is used to clamp the blank on the die, while the punch pushes into the
sheet metal. The sheet is drawn into the die hole taking the shape of the cavity.

Shearing: This is nothing but cutting of sheets by shearing action.

1.2 DEEP DRAWING OR CUP DRAWING PROCESS

Deep drawing is a process of converting metal sheet into cylindrical or box shaped
structure with or without changing its length and thickness. Many cylindrical parts
like metal can, pots, container for food and beverages, kitchen sinks, automobile fuel
tank etc. are deep drawing product.

Before discussing its working process, first we should learn about main part used in

drawing process. These parts are as follow.

—— Punch
@@Q-'I'@@@

Blank
Sheet Holder
Metal
Blank
- Die

Fig 1.4 Deep Drawing Setup



Circular Die:

Sheet metal blank is placed over a circular die opening. This die is made by either tool
steel or cast irons. Sometimes carbides and plastic are also used for die material.
Blank holder:

It is a part which holds the sheet metal blank at its required place. It provides
necessary holding force during drawing. This force should not be as high which can
cause tear of sheet metal during operation and also not too small which can cause
tearing problem.

Punch:

This part provides necessary downward force at the blank. It travel downward and
forces the blank into the die cavity to forming a cup shape. The diameter of the punch
can be denoted by D,

Blank:

The sheet metal cut piece which is used for deep drawing is known as blank. It is

placed over an circular open die. The diameter of the blank is denoted by Do.

1.3 WORKING PROCESS
The blank is placed over an open circular die with the help of blank holder. The blank

holder provides a necessary force to hold the blank. The punch which is attached with
a mechanical or hydraulic press moves downward and provide a necessary drawing
force at blank. This force tends to deform metal sheet and forces it into the die cavity
and convert it into a cup shape structure. If this force is high it causes elongation of
cup wall to thin and if excessive, it causes tearing of sheet. So the punch force should
remain a certain limit to avoid tearing during operation.The Deep drawing assembly is

shown in the below fig 1.5

Deep drawing

Punch

BElanlk holder

Fig 1.5 Deep Drawing



Deep drawing process depends on various parameters.

BLANK HOLDER FORCE AND CLEARANCE

The blank holder force (BHF) and clearance between punch and die should be
carefully decided. Excessive BHF causes tearing, and too less BHF causes wrinkling.
Clearance is usually 7%—15% of sheet thickness. Too less clearance causes ironing;

sometimes, it may be desirable.

MATERIAL ANISOTROPY

Anisotropy of the sheet has a large influence on the deep drawing ability of the sheet.
Planar anisotropy, in which properties differ with direction in the plane of the sheet,
causes earlike formation on the drawn product; this defect is called earing. Normal
anisotropy refers to the situation in which properties in the thickness direction differ
from those in the plane of the sheet. A large flow stress in the thickness direction
compared to that in the plane of the sheet provides better performance in deep
drawing as it avoids tearing. A measure of normal anisotropy is the plastic strain ratio,
which is the ratio of true width strain to true thickness strain for a material strained in
the longitudinal direction. Automobile manufacturers prefer a plastic strain ratio of

1.4 or more for steel sheets.

LIMITING DRAWING RATIO
A measure of formability is the limiting draw ratio (LDR), which is the ratio of the
diameter D of the largest blank that can be successfully drawn to the diameter of the

punch d. Theoretical limit for LDR is 2.7

CLEARANCE BETWEEN PUNCH AND DIE:
Clearance between punch and die should be taken as 7 — 14% greater than sheet

thickness. If this is too small it sheared or pierced the sheet blank.

CORNER RADIUS OF PUNCH AND DIE:
Corner radius can cause of wrinkling if it is too large and can causes fracture if it is

too small. So this radius should take between these two limits.



LUBRICATION:

Lubrication lowers the forces, increases draw ability and reduces defect in the part
and wear on the tooling. It does not provide on punch because friction between punch
and blank improves draw ability by reduce tensile stress. Mostly used lubricants in

deep drawing process are mineral oils, soap solutions, and heavy duty emulsions.

1.4 STRESS PATTERN IN DEEP DRAWING:
During the deep drawing process, different stress conditions result in the
material. Figure 1.6 given below shows a drawn cup with the different loading zones.
The zones of interest are

* Flange

e Side wall (cup wall),

¢ and its bottom.

Fig 1.6 Stress Pattern

FLANGE REGION

The stress condition in the flange area is atensile load in radial direction and
compression load in tangential direction.The outer circumferences continuously
decreases.This means the circumference of the blank is subjected to Compressive
hoop stress.It is a plane stress deformation this is because only two stresses are acting
on flange region.Thickening takes place in flange region. The stress conditions

determine the forming process at deep drawing.



WALL REGION
The important stress condition in the cup wall is the point of transition of the punch
radius to the cup wall area.Here the sheet is subjected to Bi-axial tensile stress. In the

wall region the metal is bent and then straightened.

PUNCH BOTTOM REGION
Here the metal is getting thinned down,at the bottom of the punch.In the punch nose

region sheet metal is subjected to plane strain deformation.

1.5 DEFECTS IN DEEP DRAWING:

The three major common defects which occur during this process are

¢ Fracture,

e Wrinkling

e and Earing.
Fracture occurs when the sheet metal is subjected to strains exceeding the safe strain
limits of the material. For ductile sheets this fracture usually occurs near the punch
corner .It is because maximum forming load appears in the material in this region and
also stress concentration lines are converging in this section. Once this necking
exceeds beyond a certain value, fracture appears in the drawn cup. A formed cup with

fracture at the cup bottom is shown in Fig 1.7

=t

a. Good Cup b. Fractured Cup

c. Wrinkled Cup d. Simulated Wrinkled Cup

Fig 1.7 Defects
Wrinkling occurs in the flange when compressive stresses in the circumferential
direction reaches a critical point of instability. It can occur in regions where the work

piece is unsupported or when the blank holding force is insufficient. Wrinkling defect



is shown in Fig. The wrinkling can be prevented by increasing blank holder force and
by using a draw bead. The draw bead bends and unbends the work piece material as it
passes through the blank holder. This bending over the bead increases the radial

tensile stresses and thus reduces the possibility of wrinkling.

Earing: Deep drawing of anisotropic sheets results in a drawn cup with uneven top
edge i.e. some kind of ears are formed at the top as shown in Fig 1.8 This defect is

called earing and it is because of planar anisotropy of the blank material.

Fig 1.8 Earing defect

1.6 ADVANTAGESOF CUP DRAWING PROCESS:

1. Speed.
No other process can match the speed of a punch press moving up and down. It’s

usually the most efficient method if you need a large quantity of parts making.



2. Eliminates assembly steps.

Deep drawing produces shapes with closed ends. That avoids the need to cut and weld
multiple pieces.

3. Seamless.

A deep drawn can or tube shape has no joins. That makes deep drawing an ideal
process for anything that needs to be water or gas-tight.

4. High accuracy.

Parts coming off a forming press are extremely repeatable. Assuming the tooling was
made correctly, they’ll also conform very closely to the drawing.

5. Produces complex geometries.

We’ve talked here about simple shapes like cans and sinks, but deep drawing can
create more complex forms. How about the oil pan for an engine or complex filter
housings?

6. Produces very strong parts

Many metals work-harden as they deform. Essentially, their crystal structure allows a
certain amount of movement but beyond that it becomes locked. Deep drawing

subjects metal to a lot of deformation, so can result in very hard finished parts.

1.7 DISADVANTAGES OF CUP DRAWING:

» Material thickness has a large effect on processing price.
» Special sleeves required to assist in driving the parts into dies.

» This process is expensive for low production rate.



CHAPTER-II
LITERATURE REVIEW

Mark Colgan, John Monaghan [1], reports on the initial stages of a combined
experimental and finite element analysis (FEA) of a deep drawing process. The
objective of this research was to determine the most important factors influencing a
drawing process, using the help of a design of experiments and statistical analysis.
The parameters varied include the punch and die radius, the punch velocity, clamping

force, friction and draw depth.

S. Raju, G. Ganesan, R. Karthikeyan [2], reported that Deep drawing is one of the
most important processes for forming sheet metal parts. It is widely used for mass
production of cup shapes in automobile, aerospace, Railways and packaging
industries. Cup drawing, also its importance as forming process, also serves as a basic
test for the sheet metal formability. The effect of equipment and tooling parameters
results in complex deformation mechanism. continuation of thickness variation in the

formed part may cause stress concentration and may lead to hastening of damage.

Kopanathigowtham, K.V.N.S. Srikanth&k.L.N. Murty [3], reports on the initial
stages of finite element analysis(FEA) of a Deep drawing process. The objective of
this study was to determine the factors influencing a drawing process and analyzing
the process by varying the Die radius and keeping the Friction, Punch radius and
Blank Thickness as constant. In this paper Punches, blank thickness of same geometry
and dies of various geometries were drawn by using CATIA software. And an effort
is made to study the simulation effect of main process variant namely die radius using

finite element analysis.

R. Padmanabhan, M.C. Oliveira, J.L. Alves, L.F. Menezes [4], in his studies
revealed that to determine the optimum values of the process parameters, it is
important to find their manipulate on the deformation behaviour of the sheet metal.
The importance of three significant process parameters namely, the die radius, blank
holder force and friction coefficient on the deep-drawing characteristics of a stainless

steel axi-symmetric cup was resoluted Finite element method combined with Taguchi

10



technique form a refined predictive tool to determine the influence of forming process
parameters. This paper illustrates the use of FEM with Taguchi technique to
determine the proportion of contribution of three important process parameters in the

deep-drawing process namely die radius, blank holder force and friction coefficient.

R. Venkat Reddy, Dr T.A. Janardhan Reddy, Dr. G.C.M. Reddy [5], studied that
the appearance of dimensional deviations of shape and position, of the defects in the
metal sheets that have been subjected to a cold plastic deformation process (deep
drawing), represents a critical problem for the mass production, like the machine
manufacturing industry. The aim of this publication was to present the principal
aspects that effect of various factors like BHF, punch radius, die edge radius, and

coeffcient of friction on the wrinkling of cylindrical parts in deep drawing process.

Y. Marumo, H. Saiki, L. Ruan [6],The objective of the work was to study the
influence of sheet thickness on blank holding force and limiting drawing ratio. The
paper shows variation in the blank holding force required for the elimination of
wrinkling and the limiting drawing ratio with sheet thickness. The blank holding force
required for the elimination of wrinkling increased rapidly as the sheet thickness
decreased. The blank holding force was strongly influenced by sheet thickness and the
coefficient of friction. The limiting drawing ratio decreased as sheet thickness

decreased.

A.FallahiArezodar and A. Eghbali [7],stated that deep drawing process has some
noticeable defects such as wrinkling, tearing, spring back, and thickness variation in
different locations of produced cups. In the research the parameters of interest were
punch/die shoulder radius, blank holder force, friction between sheet and

die/punch/holder.

A.R.Joshi et al [8], In this paper basic review is presented based on optimization of
process parameter in deep drawing process with the use of different techniques. The
formability of sheet metals is affected by many parameters, like material
parameters,process parameters and strain bounding criteria. Optimization of process

parameters in sheet metal forming is an important task to reduce manufacturing cost.

11



To determine the optimum values of the process parameters, it is essential to find their
influence on the deformation behaviour of the sheet metal.

Young Hoon Moon, Yong Kee Kang, Jin Wook Park, Sung Rak Gong [9], studied
the effects of internal air-pressing on deep draw ability to increase the deep
drawability of aluminum sheet. The predictable deep drawing process is limited to a
certain limit drawing ratio(LDR) beyond which failure will occur The intention of this
work was to examine the possibilities of relaxing the above limitation through the
deep drawing with internal air-pressing, aiming towards a process with an increased
drawing ratio. The equipment and tooling parameters that affect the success or failure
of a deep drawing operation are the punch and die radii, the punch and die clearance,

the press speed and the lubrication.

Saniee, F.F., Montazeran, M.H[10].The deep drawing process is one of the
important sheet-metal forming processes. Using this operation, many parts are
manufactured in various industries. In this paper, different methods of analysis such
as analytical, numerical and experimental techniques are employed to estimate the
required drawing force for a typical component. With this regard, the numerical
simulations were conducted using the finite-element (FE) method. In these
simulations, the effects of the element type on the forming load and the variation of

the thickness strain were studied.

Verma, R., Chandra[11] During the material selection and the tool design stage for a
new component the knowledge of formability of the material under consideration is
required. Limiting drawing ratio is one such measure.This paper emphasizes on

limiting drawing ratio.

Alexander J.M[12].The term “deep drawing” is generally understood to apply to the
process of deforming sheet metal that is characterized by the use of a punch and a die,
the sheet being drawn inwards and over the die profile by the advancing punch whilst
the flange is controlled by moderate “blank-holding” pressure supplied by a suitably
shaped blank-holder. Pressing, stretch-forming, beading, and embossing differ from
deep drawing in that the edges of the material are generally prevented from being

drawn in.

12



LiY Q, Cui, Z S, Ruan X Y, Zhang D J[13] Optimization method and numerical
simulation technology have been applied in sheet metal forming process to improve
design quality and shorten design cycle. However, deterministic optimization may
lead to unreliable and non-robust design due to not considering the fluctuation of
design variables, environments and operation conditions, etc. In addition to that,
iterations in optimization process may cause numerous simulation time or expensive

experiment cost

P.VR.RavindraReddy ,G.ChandraMohanReddy ,TA.JanardhanReddy [14] In
deep drawing metal sheet is subjected to high punch pressure which causes
deformation of material, during deformation stresses are generated in various zones,
which leads to various defects. The predominant failure modes in sheet metal parts are
wrinkling and fracture. Existence of thickness variation in the formed part may cause
stress concentration and may lead to acceleration of damage .Simulation and FEM
analysis of the process by varying process parameters can interpret concentration of
flowing stresses during deep drawing process in advance before actual production of
parts, thus anticipation of defect free product can predicted before actually going for

production.

N. C. Mehta, Viral V. Shiyani, Jemish R. Nasit[15] This paper mainly focuses
physical defects which occur during metal forming processes. These defects, which
may occur on the surface or be internal, are undesirable not only because of the
surface appearance, but because they may adversely affect the strength, formability
and other manufacturing characteristics of the material. Some physical defects in
metal forming processes such as rolling and forging, Defects in forging reduce its
strength. Appreciable residual stresses and warping can occur on the quenching of

steel forgings in heat treatment

Brabie G, Nanu N, Radu ME [16]This paper investigates the influence of the punch
shape on springback intensity and residual stresses distribution by simulating the
drawing process in the case of conical parts made from steel sheets by using the

following two punch shapes: cylindrical and conical

13



Chandra Pal Singh, Geeta Agnihotri[17] This paper is highlighting recent research
work and results in deep drawing. Deep-drawing operations are performed to produce
a light weight, high strength, low density, and corrosion resistible product. These
requirements will increase tendency of wrinkling and other failure defects in the
product. Parameters like as blank-holder pressure, punch radius, die radius, material

properties, and coefficient of friction affect deep drawing process.

Adnan L. O. Zaid[18]In this paper, the effect of lubrication on the deep drawing
process is investigated which includes: the effects on the force, energy requirements
and the quality of the deep drawn cylindrical steel cups. The quality is assessed by the
reduction in the amount of thinning, wrinkling, the height of ears and the bell shape.

Five different lubricants were used

Najmeddin Arab, Abotaleb Javadimanesh[19],This paper deals with the analysis of
deep drawing of circular blanks into axi-symmetric cylindrical cup using numerical
modeling. The blank draw ability has been related both theoretically and
experimentally with the initial diameter of the blank and deep drawing parameters.

The strains in the radial and circumferential directions have been measured.

Sanjay K. Ansodariya Bharat J. Kapadiya[20] The study aims to determine the
optimum blank shape design for deep drawing of arbitrary shaped cups with a
uniform trim allowance at the flange, i.e., cups without ears. The earing, or non-
uniform flange, is caused by non-uniform material flow and planar anisotropy in the
sheet. Drawing is sheet metal forming operation used to make cup shaped, box

shaped, and complex curved and concave cup.

Aniruddh Shukla , Dr Dharmendra Tyagi[21] presents a new technique for deep
drawing of cylindrical cups and the aim of this work is investigation of sheet metal
forming using a punch with blank-holder. In this technique a cylindrical cup is
produced by pushing a circular blank using a flat-headed circular punch through a
cylindrical die. Effects of die and punch geometry including, coefficient of friction,
blank-holder pressure, punch velocity, drawing load and thickness strain of the cup

have been investigated numerically for optimal process design.
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Jenn-Terng Gau,SujithTeegala, KunMin Huang,d, Tun-Jen Hsiao, BorTsuen
Lin[22] A series of experiments were conducted by using the stainless steel 304
sheets of 200 um thickness annealed at four different temperatures to understand the
influence of size effects on this process for generating knowledge, know-how and
technologies to form high quality stainless steel micro cups with large CH/OD ratio.

No lubricant was used in this study. It was proven that the proposed

H. Gharib,A.S. Wifi,M. Younan, A. Nassef[23] The research presented in this paper
offers a new optimization strategy which can be useful incontrolling the process
parameters to produce a defect free deep drawn part using optimum process

conditions.

Pradipkumar Patil, K.H.Inamdar[24] The finite element method is a powerful tool
to predict material thinning deformations before prototypes are made. In this paper,
thinning defect has been considered for a rectangular shaped part and simulation has

been carried out

Ravindra K.Saxena, P.M. Dixit[25] The occurrence of ductile fracture is often a
limiting factor in metal forming processes. Prediction of the initiation of ductile
fracture allows a prior modification of the process which can result in a defect-free
final product with financial savings. The intensity of voids is often represented by
introducing a variable called damage. This paper deals with the prediction of fracture

initiation in deep drawn cup.

Suresh Kurra, Srinivasa Prakash Regalla[26] This paper focuses on the formability
and thickness distribution in incremental sheet forming (ISF) of extra-deep drawing
steel (EDD). Theoretical and simulated thickness values have been compared with
measured thickness values. It was found from the results that the finite element

model was more accurate than theoretical model in predicting thickness distribution.

V.Malikova,,R.Ossenbrink,B.Viehweger,V. Michailov[27] In this study the change
of the stiffness of the structured sheet metal during the deep drawing is investigated.
Two cases are considered: deep drawing and compression. The results show a

significant change of the geometry and mechanical properties of the structured sheet

15



metal in both cases. The relationships between the flattening and stiffness properties

in both cases were discussed in detail.

Patil P.M.Bajaj P. S.[28]This paper reports on the initial stages of a combined
experimental and finite element analysis (FEA) of a deep drawing process. A deep
drawing rig was designed and built for this purpose. Punches and dies of various
geometries were manufactured. It has also been observed from the work to date that
the speed of drawing plays an interesting role, in so far as, the higher is the speed the

further is the draw.

Magar, S.M., Ghanegaonkar, P.M., Vikhe, G.J[29] This book describes the
approach of Analytical, Numerical and Experimental study of Deep Drawing process,
on the basis of parameters selected from tooling industry point of view. Analytically
studied parameters are: Stress, Punch force, Blank holder force and Initial Blank size.
For Experimental study, two cylindrical components are drawn and parameters
studied are: formability, thickness distribution, major and minor strain in cup wall.

Classification of various Finite Element Analysis softwares is studied.

Shishir Anwekar, Abhishek Jain[30] In the presented study, simulation of the
drawing process for determining strain distribution pattern in the drawn component
for a particular displacement is explained. The study was conducted by using
ANSYS12.0, in which, two models have been tested. Both models constructed solely

out of axisymmetric, quad 4 node, PLANE 42 elements.
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2.1 SUMMARY OF LITERATURE REVIEW

There are many processing and material parameters which are affecting deep drawing
process. Some of the functions are there which cover most of the material and
processing parameters affecting the thickness distribution and also the quality of the
product. During the last decade many researchers have provided those functions
which increase the efficiency of the process and reduce the undesirable features like
earing and wrinkles. Some of the functions which are covering most of the material
and processing parameters and also the effect of different material and processing
parameters are shown.

After studying the above literatures we have concluded that following process
parameters are taken place in deep drawing process.

1. Radius on Punch

2. Radius on Die

3. Friction

4. Material to be drawn

5. Blank holding force

6. Die clearance

7.Stress and Strain Distribution
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3.1

rl

CHAPTER-III
DESIGN CALCULATIONS

NOMENCLATURE

: radius to the mean surface of sheet at the moving boundary between regions III

and IV

2

: radius to the mean surface of sheet at the moving boundary between regions IV

and V

ra

rb:

IC:

rd :

Ie

f :

: current rim radius

current boundary radius of the rim region between regions I and II

radius to the die lip

die throat radius

: punch radius

radius of the flat base of punch

rm : average radial position of two points

€0,er,¢t : principal circumferential, radial and thickness strains respectively

eequ : equivalent strain

o0,0r,0t : principal circumferential, radial and thickness stresses respectively

oequ : Von Mises yield stress
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3.2

DIMENSIONS OF ASSEMBLY

Table 3.1 Dimensions of the Assembly

SNO | PART NAME MATERIAL DIMENSIONS(in mm)
1. BLANK Aluminium,Copper, Radius:45
Titanium Thickness:2

2. BLANK HOLDER Structural steel Inner radius:20
Outerradius:40
Thickness:5

3. DIE Structural steel Height:20
Fillet radius:2.5
Inner radius:17
Outer radius:40

4. PUNCH Structural steel Radius:15
Height:20
Fillet radius:2.5

3.3 FORMULAE

ﬁ/LANK HOLDER

yl

AN

Dy
: g ] A

NN

1e

I

Fig 3.1 Dimensions




Region I - (Flange in contact with the blank-holder)

Region II - (Flange not in contact with the blank-holder)

Region III - (Die Profile)

Region IV - (Straight Wall)

Region V - (Punch Profile)

Region VI - (Flat Bottom below the punch)

Region I (Flange in contact with the blank-holder): It consists of the part of the
material present over the die where it experiences a state of radial drawing under
friction with the blank holder and the die surface. In this region, wrinkling or local
buckling of the sheet blank due to compressive stress is possible. So, the blankholder
role is to press normally on this area to suppress wrinkling of the flange and forces the

sheet to have a constant thickness.

Region II (Flange not in contact with the blank-holder): This is the remaining part-
of the flange undergoing radial drawing. The material in this region is not in contact
with the blank holder. Thus, thickness variation is possible, where the material starts

with a large thickness at radius rb and thins until it reaches radius rc (die lip).

Region III (Die Profile): This region undergoes both radial drawing with friction—
over die profile and bending/unbending effect. This combined loading causes sudden
decrease in thickness at the die lip (radius rc). The position of the point of departure
of the material from the die profile to the wall of the cup (radius rl) is varying
through time. This represents a problem with a moving boundary, which is not known

a priori in the analysis and requires special treatment to determine its correct position.

Region IV (Straight Wall): this region forms the wall of the cup where it starts from
the departure of sheet from the die profile until it meets the punch profile at radius r2.
The material in this region suffers a state of biaxial stress. The point of contact of the

sheet with the punch profile (at radius r2) is also considered a moving boundary.
Region V (Punch Profile): This region constitutes the part of the sheet being stretched

under friction and bent over the punch profile. Fracture of the sheet metal usually

occurs at the boundary between this region and region IV.
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Region VI (Flat Bottom below the punch): Material is drawn under biaxial state of-
stress in this region. Stresses and strains are nearly uniform and constant over this

area.

[ 1)

11
! Gy,
\ G
(s 1]
AV
GI
o G

Gn

Cr

Co

Fig 3.2 stresses in various regions of formed cup



Table 3.2 Cross-sectional areas of different regions

Region Cross section area
1 a,; =Jr{.=f = J,,'}
1l gy =)T(!"_ﬁ:—i"l_:)
1 a, =27i,p,0
(I=cosd)

Where, 4, =r, +p, - p, P

= the centroid of the curved surface on the die profile

a, =2mi,T
{ . 1
Where, 4, =r, +Lpp tan & +—£T]c056‘

= the centrond of the wall

v ay =2rd, p",g
Where, ’1',-. =¥y + p;. iﬂ!

= the centroid of the curved surface on the punch profile

N . -
| a,,_, —mlr.

Effective Stress

Von Mises or effective stress is defined as follows:

fa I s o 2
5 =JE[{¢ _&,f +l6, -0} +(o,-5.Y]
Plastic Strains

Plastic strains for the three principal directions; circumferential, thickness, and radial

(meridional) directions can be expressed as

r
Eqg = ln[ﬁj



From the condition of constancy of volume:

de. +de,+de, =0 , & +¢&,+¢5,=0

Effective Strain

The effective incremental strain can be stated as:

dz = \/ g (e, +de, V¥ — de de, ]

Stress-Strain Relationship

The Levy-Lode stress-strain relationship states that:
de,—de, de,—de, de,—de, 3de

o,—0, O, — 0, o,-o0, 20

Hence, the stress-strain relations can be written as:

20 20

c,—0o, 255—5(&0 ~de, )z;dig(wgg +de,)
20 20

o, -0, ==—(de, —de,)==——(2de, + ds,)
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CHAPTER-1V
MODELLING AND SIMULATION

In this project we have chosen CATIA for 3D modelling

ABOUT CATIA
CATIA is an acronym for Computer Aided Three-dimensional
Interactive Application. It is one of the leading 3D software used by organizations in

multiple industries ranging from aerospace, automobile to consumer products.

CATIA is a multi platform 3D software suite developed by Dassault Systems,
encompassing CAD, CAM as well as CAE

CATIA is a solid modelling tool that unites the 3D parametric features with 2D tools
and also addresses every design-to-manufacturing process. In addition to creating
solid models and assemblies, CATIA also provides generating orthographic, section,
auxiliary, isometric or detailed 2D drawing views. It is also possible to generate
model dimensions and create reference dimensions in the drawing views. The bi-
directionally associative property of CATIA ensures that the modifications made in

the model are reflected in the drawing views and vice-versa.

4.1 CATIA for various Disciplines

The products developed today are getting increasingly complex. Users are demanding
better performance and quality from them. This compels manufacturers to come up
with engaging technical solutions and that too at a rapid pace. The engineering
solutions from CATIA answers that challenge, enabling the rapid development of

high-quality mechanical products

CATIA from Dassault is a diverse application that offers a complete engineering
toolset for various disciplines within a single working environment. What is more, the
workbenches (as CATIAs modules are called) provide a seamless and consistent user

interface across multiple disciplines.
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4.1.1 CATIA for Mechanical Engineering

CATIA 3D modeling tools provide mechanical engineers with valuable insights into
key factors of quality and performance early in the product development phase.
Digital prototyping, combined with digital analysis and simulation, allows product
development teams to virtually create and analyze a mechanical product in its
operating environment. CATIA’s mechanical design products allow the user to create
parts in a highly productive and intuitive environment, to enrich existing mechanical
part design with wireframe and basic surface features. CATIA also provides advanced
drafting capabilities through the associative drawing generation from 3D part and
assembly designs. Mechanical Design products can address 2D design and drawing
production requirements with a stand-alone state-of-the-art 2D tool Interactive

Drafting

Key Benefits

Create any type of 3D part, from rough 3D sketches to fully detailed industrial
assemblies.

Unbreakable relational design - a new way to manage links between objects and
related behaviors in configured assemblies.

Enables a smooth evolution from 2D- to 3D-based design methodologies.

Productive and consistent drawing update removes the need for additional user
operations.

Process oriented tools capture the manufacturing process intent in the early stages of
design.

A wide range of applications for tooling design, for generic tooling in addition to
mold and die.

Advanced technologies for mechanical surfacing, based on a powerful specification-

driven modeling approach
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4.1.2 CATIA for Design / Styling

From product to transportation industries, the style & design of the product plays a
major role in its success on the market. Develop shape & material creativity, reach a
high level of surface sophistication & quality, and get the right decision tools with
physical & virtual prototypes. These are the key elements of CATIA Design/Styling

to boost design innovation.

From 3D sketching, subdivision surface, Class-A modeling to 3D printing, reverse
engineering, visualization and experience, CATIA Design/Styling provides all the

solutions for design creativity, surface excellence and product experience.

Key Benefits

Industrial Design: whether starting 3D ideation from scratch or from 2D sketches,
industrial designers can manipulate shapes with unrivaled freedom and take advantage
of a true creativity accelerator to explore more ideas in the early conceptual phase.

Advanced Surface Modeling: fully addresses the Automotive Class-A shape design
process with a solution for surface refinement that integrates industry-leading Icem
surfacing technologies. Delivers a powerful and intuitive suite of tools for modeling,
analyzing and visualizing aesthetic and ergonomic shapes for the highest Class-A

surface quality.

Since it is feature rich — regardless of the discipline you would like to work on —
training on how to use CATIA is very important to derive maximum benefits from the

software.

4.2 VARIOUS MODULES

CATIA offers many workbenches that can be loosely termed as modules. A few of

the important workbenches and their brief functionality description is given below:

Part Design: The most essential workbench needed for solid modelling. This CATIA

module makes it possible to design precise 3D mechanical parts with an intuitive and
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flexible user interface, from sketching in an assembly context to iterative detailed

design.

Generative Shape Design: allows you to quickly model both simple and complex
shapes using wireframe and surface features. It provides a large set of tools for
creating and editing shape designs. Though not essential, knowledge of Part Design

will be very handy in better utilization of this module.

Assembly: The basics of product structure, constraints, and moving assemblies and
parts can be learned quickly. This is the workbench that allows connecting all the

parts to form a machine or a component.

Kinematic Simulation: Kinematics involves an assembly of parts that are connected
together by a series of joints, referred to as a mechanism. These joints define how an
assembly can perform motion. It addresses the design review environment of digital

mock-ups. This workbench shows how a machine will move in the real world.
These are only four of the many workbenches that CATIA offers. A few of the other

modules include Machining, Equipment & System, Infrastructure and Ergonomics

Design & Analysis.

4.3 MODELLING IN CATIA:

Sketching:
1.Die: Select the work plane in front view and draw the necessary sketch for body

with given dimensions and revolve it using shaft command to obtain the body. The

below fig 4.1 shows the Die part obtained in CATIA

27



I CATIAVS - [Die part.CATPart] - x
B Gt ENOVIAVSVPM File  Edit View Inset  Tools  Window  Help NIE

n H 9@lef¢s ADnE@odsad B |- /=

™ Die part

&
& xy plane
= yz plane
& 7 plane )
= I Axds Systems
J&-Q Geometrical Set.1 =
L < Point.1 =
&
+%E PartBod
&
i
g!v
:D:v
@
2
O LY 0% O oy R,

NoE&, B9 @ e BE8) um4nal s 800608 5 248 & 062 o /a3

Select an object or a command [

L

Fig 4.1 Die

2.Blank Holder: Select the work plane in front view and draw the necessary sketch
for blank holder with given dimensions and revolve it using shaft command to obtain

the body.The below fig 4.2 shows the blank holder part obtained in CATIA
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Fig 4.2 Blank holder

3.Punch: Select the work plane in front view and draw the necessary sketch for punch
with given dimensions and revolve it using shaft command to obtain the body.Punch
head is also added to punch for stability. The below fig 4.3 shows the punch part
obtained in CATIA
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Fig 4.3 punch
4.Blank:Designing of blank is done generative sheet metal design work bench.Sheet
metal parameters are adjusted.Select the work plane in front view.Draw the sketch for
blank with given dimensions. The below fig 4.4 shows the blank part obtained in

CATIA
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Fig 4.4 blank

4.3.1 Assembly

All the individually produced components are now put together and are assembled to

produce the final product which is as shown in the below fig 4.5



All the parts are inserted into the assembly workbench.
All the components are assembled by using surface contact and offset constraints.

The axes of the mating components are aligned priorly before using these constraints.
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Fig 4.5 Deep drawing Assembly

4.4 SIMULATION

Analysis of the deep drawing operation is done in ANSYS.

4.4.1 ANSYS

ANSYS is a general purpose finite element modeling package for numerically solving
a wide variety of mechanical problems. These problems include: static/dynamic
structural analysis (both linear and non-linear), heat transfer and fluid problems, as

well as acoustic and electro-magnetic problems.

In general, a finite element solution may be broken into the following three stages.

This is a general guideline that can be used for setting up any finite element analysis.

1. Preprocessing: defining the problem; the major steps in preprocessing are
given below:
o Define keypoints/lines/areas/volumes

o Define element type and material/geometric properties



o Mesh lines/areas/volumes as required

The amount of detail required will depend on the dimensionality of the

analysis (i.e. 1D, 2D, axi-symmetric, 3D).

Solution: assigning loads, constraints and solving; here we specify the loads
(point or pressure), contraints (translational and rotational) and finally solve the

resulting set of equations.

2.Postprocessing: further processing and viewing of the results; in this stage one

may wish to see:

o Lists of nodal displacements
o Element forces and moments
o Deflection plots

o Stress contour diagrams

ANSYS uses certain inputs and evaluates the product behavior to the physics that you
are testing it in. It is a general purpose software used to simulate the interactions
between various physics like dynamics, statics, fluids, electromagnetic, thermal, and
vibrations. ANSYS typically creates the user an opportunity to create a virtual
environment to simulate the tests or working conditions of the products before
manufacturing the prototypes. This would certainly reduce the cost of producing
prototypes and mainly the time. In this competitive world the accuracy and time are
the most deciding factors for the company or the organization to sustain. ANSYS
helps in increasing the accuracy and decreasing the time of outcome of the final
product.

4.4.2 Advantages

« ANSYS can import all kinds of CAD geometries (3D and 2D) from
different CAD software's and perform simulations, and also it has the
capability of creating one effortlessly. ANSYS has inbuilt CAD developing
software's like Design Modeler and Space Claim which makes the work

flow even smoother.
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ANSYS has the capability of performing advanced engineering simulations
accurately and realistic in nature by its variety of contact algorithms, time
dependent simulations and non linear material models.

ANSYS has the capability of integrating various physics into one platform
and perform the analysis. Just like integrating a thermal analysis with
structural and integrating fluid flow analysis with thermal and structural,
etc.,

ANSYS now has featured its development into a product called ANSYS
AIM, which is capable of performing multi physics simulation. It is a single
platform which can integrate all kinds of physics and perform simulations.
ANSYS has its own customization tool called ACT which uses python as a
background scripting language and used in creating customized user
required features in it.

ANSYS has the capability to optimize various features like the geometrical
design, boundary conditions and analyse the behavior of the product under

various criterion's.
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Fig 4.6 Imported assembly file in ANSYS

The above fig 4.6 shows the assembly file that is imported into the ansys workbench
for the purpose of analysis and simulation.

Material is assigned to each of the parts.we have considered structural steel for
punch,die and blank holder.

aluminium,copper and titanium for the blank

4.4.3 Material Properties

The material properties for various materials like structural steel,Aluminium

alloy,copper alloy and titanium alloy has been mentionted in the following pictures.
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Fig 4.7 Properties of Structural steel
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Fig 4.8 Properties of Aluminium alloy NL

34



Engeneenng Datac Matenal View

Copper Alloy NL

Density 8.3e-06 kg/mm"

Structural

 Isotropic Elasticity
Young's Modulus and Pomsson's Ratio

Dherive from
Young's Modulus 1.1e+05 MPa
Poisson’s Ratio 034
Bulk Modulus 1.1458e+05 MPa
Shear Modulus 41045 MPa
298+
“
s
Bilinear lsotropic Hardening oA
0.0e~0
0.0e+0 Strain 1.3e-2

Thermal

Specific Heat Constant Pressure 3.85e+05 mlfkg-"C

Fig 4.9 Properties of Copper alloy NL

bngmeering Data: Matenal View

Titanium Alloy NL

Density 452e-06 kg/mm"
Structural v
“ lsotropic Elashcity
Derive from Young's Modulus and Poiszon's Ratic
Young's Modulus QB000 MP=
Poisson’s Ratic 0.36
Bulk Medulus 1.1420e+05 MPa
Shear Modulus 35204 MPa
10e+3
‘ L
2
Bilinear Isotropic Hardening ‘ Z
| 0.0es0 |
| 00e+d Strain 48e-2 |
Thermal v
Specific Heat Constant Pressure 5.22e+05 mlikg"C

Fig 4.10 Properties of Titanium alloy NL



|- M Context: A Static Structura) - Mechanical [ANSYS Mechanical Enterprise] - & x

_ Home  VitualTopology ~ Display | Seleion  Automation ~8 e
@nomeiric * QPievious FRotate -5¢ -Rotate Sk T ranup 4 PanDown  BlRandom g O = E [Fshowvetices| A Direction o & | grew ———— D ["":I [W1]
d0issk st @uet Rotate «Sy chRotate Sy SwPanleft e PanRight = Rescale ::] 1 Close Vertices  [*]Mesh Connection F =
®Views  angle[10 | DRotate -5z O Rotate 5: @ zoomin Qzoomout  Pbreterences | TP Fan [Tk el e S 1o “fThicken ot ) ®jsewtycontss v has g o M | ey

Orient Annctation Style Vertex Edge. Explode Viewpars Display

Outline 10X QA Red %[Clr0Q Q@ swakide- TRRNRRBEE VD E ECipsond- [Empy] @edend- 0 SelectBy~ @ Comvert~

Name - v
- Geomery “ ANSYS
{8 Materssls 2021
[l Virtuz Topolagy : 5
y ACADEMIC

(8- 25 Coordnate Systems:
&3 Connections
B /% Mesh
/B Edge Siaing
«'® Edge Sizing 2

Details of “Virtual Topelogy” ~QOx

= Definition »
Method | Automatic
‘Behavior Ttow

= Advanced
Generate an Update
Simpity Faces
Merge Face Edges

Messages

Virtual Faces I3 0 |
. — — - Thursday, May 13, 2021 11:04:00 AN

Virtual E o
etomt Eoks have conflits vtk Project>Madel>Static Strucurai Solution Trwursdiay, May 13, 2021 8:55:48 M
Virtus) Spit Edges. i . Wamine|Lower order pyramid elements are present in the analysis. Having a larqe number of pyra Project> Model > Static Structural> Solution Thursday. May 13, 2021 8:58:41 AM

Virtual Spit Faces 15

Fig 4.11 Virtual Topology

4.4.4 Virtual Topology

The topology of the model is its composition from faces, edges, and vertices.
The Virtual Topology toolset allows you to manipulate this topology and create a
simplified form for the purpose of meshing. This simplified form is different
from the real model and is called virtual topology. The faces and edges that result
from the manipulation are said to be virtual. Similarly, parts and part instances

that contain virtual faces and edges are said to be virtual.

The Virtual Topology toolset allows you to remove small details by combining a
small face with an adjacent face or by combining a small edge with an adjacent
edge. The faces or edges to be combined can be specified directly, or you can
choose the edges and vertices to ignore.The above Fig 4.11 shows the Virtual

topology that is applied to the surfaces of the various parts of assembly
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Fig 4.12 Connections

4.4.5 Connections

Here all the contacts are taken as frictional contacts with the friction coefficient as

0.1.

* The Blank is taken as the contact body and the target bodies are punch,blank

holder and die respectively.

* The connections between the contact and target bodies are as follows:
» Blank to Punch
» Blank to Blank Holder
» Blank to Die

The above Fig 4.12 shows the connections that are made in the deep drawing setup.
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4.4.6 Meshing

ANSYS provides general purpose, high-performance, automated, intelligent meshing
software that produces the most appropriate mesh for accurate, efficient multiphysics
solutions from easy, automatic meshing to highly crafted mesh. Smart defaults are
built into the software to make meshing a painless and intuitive task, delivering the

required resolution to capture solution gradients properly for dependable results.

ANSYS meshing solutions range from easy, automated meshing to highly crafted
meshing. Methods available cover the meshing spectrum of high-order to linear

elements and fast tetrahedral and polyhedral to high-quality hexahedral and mosaic.

ANSYS meshing capabilities help reduce the amount of time and effort spent to get to
accurate results. Since meshing typically consumes a significant portion of the time it
takes to get simulation results, ANSYS helps by making better and more automated

meshing tools.

Whether performing a structural, fluid or electromagnetic simulation, ANSYS can
provide us with the most appropriate mesh for accurate and efficient solutions.The

below image gives us a glimpse of ANSYS meshing
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Meshing on punch:
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Fig 4.13 Meshing on punch

Edge sizing,face sizing and face meshing are the meshing techniques adopted for the

meshing of punch.The above fig 4.13 shows the meshing on punch

* For the meshing to be more accurate certain number of divisions (3,30,15) are

taken on various regions of punch in edge meshing.

* Face meshing is on the cylindrical surface of the punch.

may have conflicts witr | Project> hasel> Static Structurai Solution Tursday, May 13, 2021 9:58:48 AM
Thursday, May 13, 2021 8:5841 AM

ACADEMIC

* Face sizing is done on the punch bottom surface where the element size is

taken as 1 mm

¢ Behaviour: Hard.

39



Meshing on Blank Holder
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Fig 4.14 Meshing on blank holder

The above fig 4.14 shows the meshing on Blank holder.Edge sizing is adopted for the
blank holder where the number of divisions are taken as 60.

Behaviour: Hard

Meshing on Blank
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Fig 4.15 Meshing on Blank
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The above fig 4.15 shows the meshing on blank

Edge sizing,face meshing and hex dominant methods are used for the meshing of
blank.

The number of divisions are taken as 25 in edge sizing.

Hex dominant method is used for the meshing to be more accurate

Meshing on Die
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Fig 4.16 Meshing on die

The above fig 4.16 shows the meshing on Die
Edge sizing,face meshing and face sizing are adopted for the meshing of die.
* For the meshing to be more accurate certain number of divisions (3,9,60) are
taken on various regions of punch in edge meshing.
* Face sizing is done for the inner bottom surface of die with element size as
0.5mm

* Face meshing is done on the die excluding the inner bottom surface of die.

Final Meshing of the assembly:

The combined meshing of the assembly is shown in the following figure.
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Fig 4.17 Meshing of final assembly

4.4.7 Remote Displacement:
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Fig 4.18 Remote displacement
The Remote displacement boundary condition is used to guide the displacement of a
face or edge of a structure from a remote point. This provides several advantages
compared to the classical displacement boundary condition such as:

» A deformation behavior can be added to the assigned entity.

- A rotation condition can be applied to an edge or a face of a structure.
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» Remote Displacement A is applied to the DIE bottom surface where
displacements in all directions are taken as zero i.e (x,y,z)=(0,0,0)

» Remote Displacement B is applied to the top surface of the BLANK
HOLDER where displacements in all directions are taken as zero i.e
(x,y,2)=(0,0,0)

» Remote Displacement Cis applied to the top surface of the PUNCH HEAD
where displacements in x and y directions are taken as zero and 15mm in z

direction i.e (x,y,z)=(0,0,15).Below fig 4.19 shows the tabular data of the

displacements that are considered on punch.

Tabudar Diata

Steps |Time [5] iF X [mm] ||7 ¥ [mm; |F Z [rmim] r; R ([ By ||7 BRI M
i I ) . . 18 G 0 1§ 0.
2 11 0.2 = (i, = [, = .15 =, = [, = [,
3 [2 O = {, = i, w a3, w 3, = =
4 13 0.6 = {, = =45 = = [ =
5 |4 0.8 = i, = i, = () = [k =
& |5 1. = i, = i 7,5 = e Ji} = [}
T |6 Vol = [}, = [, = /G, = fi. = i = )
8 7 Toih = =} = «1{.5 = m =
BB |1E = I, = =-12, =, = =
J01% (1.8 = {1, = [i = 135 = i, = = [
11110 |2 = {, = . 18, = {, = =
L] |

Fig 4.19 Tabular data

After considering all of the above conditions the project is ready to solve.
e In analysis settings under the solution part we have considered the total

deformation,stress and strain.

After solving the blank is drawn into the desired cup.

The below fig 4.20 shows the cup that is drawn and it provides the necessary

solutions.
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Fig 4.20 cup drawn

In our project we have considered various materials like Aluminium,Copper, Titanium

for the blank.

We have obtained the solution for each of the material and the results are depicted as

follows:




4.4.8 SOLUTIONS OBTAINED

1.ALUMINIUM:
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Fig 4.21 Force convergence in Al

The above fig 4.21 provides information about the force convergence in the solution

information.

The following are the results for the stresses,strains and total deformation that are
generated in the various regions of cup i.e flane of the cup,vertical wall and punch
bottom.

Stress:
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Fig 4.22 Stresses generated in Al cup

The Von mises stress is indicated in the above fig 4.22.The maximum and minimum

stresses that are generated in the cup are 990.36 MPa and 149.48 MPa respectively.

Total deformation

Context A Stabic Structural - Mechanital [ANSYS Mechanical Ente - & X
- Home  Resul | Display  Selection  Automation 20
@niometric * QPrevieus FRotate -5x Rotate sx ¥ Panup I Panown  MlRandom a O | = E 8  show Vertices | Direction mo [ AP D [ﬂr] oo
c * o} =
e Q iRatate -5y <bRotate Sy ®=Panleft = PanRight Rescale -2 @ Close Vertices | | [<IMesh Connection GF i | =
Wviews  angie 10| TRatate -5z D Rotate 5z @ zoomin QzoomOut  Pereferences P e o |scehon JomeY | 014 (Auto Seah = | | Thicken Cekne € et -l
Orient amatation Style Vertex Edoe Explace Viewparts Display
Outline ~4Ox & % Q @ @ @  Select | Mode- [T PDREER % [ElCipboard~ [Empty] & Extend~ ¥ SelectBy- @ Corwert~ _
Name i V.
T progec” : " ANSYS
S 3 Model (as) e i 2021 R
D, Geometry - . s
- @ Punch . e ACADEMIC
2@ Bark .
B @ BankHolder
& @ Ole
-, [ Materials

@i Vit Topolagy.
i Coordnate Systems
& 8 Connections

@

&

%n
E
z

-5 Soluton Information
S Equivaient Stress.

/8 Tatal Deformation
Detaits of “Total Deformation” rpox
= Scope -
Staping Method | Geometry Selection
Geametry Al Badies
Ty TTotal Deformation 000 3500 70.00{rhen)
B Time L~ SSa—— SSS— X
Display Time Last 175 0
Calculate Time History | Yes
\dentifier i Geaph *REx
Suppressed [ Animation |« B Frames v |2Secifute) ~ BB EEs ER &
= Resuits
" Winimum Tomm
Maximum 15432 mm [ 1 2 3 a I 3 3 7 & [} 10

843 Messages  NoSelection = Metr Celsius

- © search i | | @ 7 g B

Fig 4.23 Total deformation in Al
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The total deformation in the cup is shown in the fig 4.23.The maximum deformation

in the cup is recorded as 15.432mm and the minimum deformation is recorded as
Omm.

Strain
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Fig 4.24 Strain in Al
The strain in the Al is shown in the above fig 4.24.The maximum and minimum

strain in the cup are recorded as 0.014408 and 0.0021085.
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Solution Information
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Fig 4.25 Force convergence in Cu

The above fig 4.25 provides information about the force convergence in the solution
information

Stress
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Fig 4.26 Stresses generated in Cu cup

The Von mises stress is indicated in the above fig 4.26. The maximum and minimum

stresses that are generated in the cup are 1269.1 MPa and 273.21 MPa respectively.
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Fig 4.27 Total deformation in Cu

The total deformation in the cup is shown in the fig 4.27.The maximum deformation

in the cup is recorded as 15.309 mm and the minimum deformation is recorded as

Omm.
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Fig 4.28 Strain in Cu

The maximum and minimum strain in the cup are recorded as 0.012918 and 0.002462
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3.TITANIUM
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Fig 4.29 Force convergence in Ti

The above fig 4.29 provides information about the force convergence in the solution

information.
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The Von mises stress is indicated in the above fig 4.30.The maximum and minimum
stresses that are generated in the cup are 3408.9 MPa and 564.71 MPa respectively
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Fig 4.31 Total deformation in Ti
The total deformation in the cup is shown in the fig 4.31.The maximum deformation
in the cup is recorded as 15.423 mm and the minimum deformation is recorded as
Omm
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Fig 4.32 Strain in Ti
The strain in the Ti is shown in the above fig 4.32. The maximum and minimum strain

in the cup are recorded as 0.037512 and 0.0058912.
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CHAPTER-V
CONCLUSIONS

From the analysis carried out, the following results are obtained as presented in Table
5.1

Table 5.1 Comparision of results

S.NO | MATERIAL STRESS STRAIN TOTAL
(in MPa) DEFORMATION
(in mm)
1. Aluminium 990.36 0.014408 15.432
2. Copper 1296.1 0.012918 15.309
3. Titanium 3408.9 0.037512 15.423

The above table compares the maximum values of stress, strain and deformation of

different materials.

» We can observe that the maximum stress and strain are generated in
TITANIUM alloy.
» Where as the maximum total deformation is generated in ALUMINIUM alloy.

By considering the various stress patterns in the cup drawn, we came to a conclusion
that the
* Flange region has the minimum stress

e Punch bottom region has the maximum stress
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