

Developing Python Code for Static

and Modal Analysis of Plane Truss

Structure

A project report submitted in partial fulfilment of the requirement for
the award of the degree of

BACHELOR OF TECHNOLOGY

 IN

MECHANICAL ENGINEERING

BY

 DUNGA DIVYA (317126520191)

GOLAKOTI SRI NETHIKONDA (318126520L49)

DEEPAK KUMAR BEHERA (317126520190)

PASUPULETI BHARGAVI SRI (317126520213)

DATLA SANTOSH SUNIL VARMA (317126520189)

 Under the esteemed guidance of

Mr. R. VARA PRASAD M.Tech (PhD)

Professor

DEPARTMENT OF MECHANICAL ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY & SCIENCES (A)

(Affiliated to Andhra University, Accredited By NBA and NAAC with ‘A’ Grade)

SANGIVALASA, VISAKHAPATNAM (District) – 531162

2021

ACKNOWLEDGEMENTS

We express immensely our deep sense of gratitude Mr.R.Vara Prasad,asst

Professor Department of Mechanical Engineering, Anil Neerukonda Institute of

Technology & Sciences, Sangivalasa, Bheemunipatnam Mandal, Visakhapatnam

district for his valuable guidance and encouragement at every stage of the work

made it a successful fulfillment.

 We were very thankful to Prof.T.V.HanumanthaRao, Principal and

Prof.B.NagaRaju, Head of the Department, Mechanical Engineering Department, Anil

Neerukonda Institute of Technology & Sciences for their valuable suggestions.

We express our sincere thanks to the members of non-teaching staff of Mechanical

Engineering for their kind co-operation and support to carry on work.

Last but not the least, we like to convey our thanks to all who have contributed either

directly or indirectly for the completion of our work.

DUNGA DIVYA (317126520191)

DEEPAK KUMAR BEHERA (317126520190)

GOLAKOTI SRI NETHIKONDA (318126520L49)

PASUPULETI BHARGAVI SRI (317126520213)

DATLA SANTOSH SUNIL VARMA (317126520189)

ABSTRACT

Python is a high-sophisticated, general- purposefulness, object-oriented,

enhanced programming language that includes several general features like

clean, easy and simple language, indicative language, dynamically typed,

automatic memory management and interpreted and very best tool when

comparing with MATLAB because of various rich libraries. In various fields of

science, computational work and numerical calculations forms a bridge

between theory and experimentation which leads to developing automation and

simulation. Developing of automation or simulation has created several benefits

like quality, high production rate, efficient use of materials, increased safety

and decreases industry lead time. Therefore, the present work have been

investigated to develop Python code for automation in structural and

vibrational analysis of any Truss structure. In order to write python code,

Railway bridge truss structure was considered and the data was taken from

introduction to finite elements by chandrapatla. Fully working python code was

developed using jupyter notebook and python 3.9.10 and investigated nodal

displacements, element stresses, support reactions, free natural frequencies and

mode shapes. These results are compared using ANSYS APDL R21. Therefore,

using this developed python code, many researchers can do automation for

analysis of any truss structure at rocket speed.

Then Modal analysis of truss is to be done by running python script. For

validation purpose, the results obtained from python scripting are compared with the

results obtained from ANSYS software and MATLAB. Therefore this project is

going to show that Python is best suited for scientific applications when compared to

ANSYS and MATLAB

Keywords:. ANSYS APDL, Automation, Jupyter Notebook, MATLAB, Python,

Truss.

i

CONTENTS

Para No Description Page No

 CHAPTER-I

 INTRODUCTION

 1.0 Scope and background 1

 1.1 Introduction of truss 2

 1.2 Types of truss 3

 1.2.1 Pitched truss 3

 1.2.2 Parallel truss3 3

 1.3 Basic types of trusses 3

 1.3.1 Warren truss 4

 1.3.2 Octet truss 4

 1.3.3 Pratt truss 4

 1.3.4 Bowstring truss 5

 1.3.5 King post truss 5

 1.3.6 Lenticular truss 6

 1.3.7 Town’s lattice truss 6

 1.4 Elements of truss 7

 1.5 Whats is FEA 7

 1.6 Modal analysis 8

1.6.1 Benefits of model analysis 8

1.6.2 Terminology & concepts 8

1.6.3 Mode extraction 9

1.6.4 Mode expansion 9

1.6.5 Mode extraction methods 9

1.6.6 Modal analysis procedure 10

1.6.7 Other analysis options 11

 1.7 Why python for scientific computering 12

1.7.1 Numerical python 12

1.7.2 Visualisation in python 13

ii

1.7.3 Numerical methods using python scipy 13

 CHAPTER-II

 LITERATURE REVIEW 14

 2.0 Overview of the project 17

 CHAPTER-III

 ANALYSIS OF TRUSS USING ANSYS SOFTWARE 18

 3.0 Ansys 18

 3.1 Advantages 20

 3.2 Problem statement 21

 3.3 Structural analysis of truss 21

 3.3.1 Nodal displacement results 35

 3.3.2 Nodal stress results 36

 3.3.3 Elementary stress results 36

 3.4 Modal analysis of truss 37

 3.4.1 Results of modal analysis 49

 CHAPTER-IV

 FEA ANALYSIS OF TRUSS STRUCTURE USING PYTHON 51

 4.1 Need of python 51

4.1.1 Reasons for using python for scientific computing 53

4.1.2 Reasons for using python over mat lab 53

 4.2 Methodology of implementing python for current project 53

 4.2.1 Jupyter notebook 53

 4.2.2 Python version 54

 4.2.3 Python libraries 54

4.3 Developing python code for planer truss structure 55

4.3.1 Formulation of truss behind developing code for static analysis 55

4.3.2 Formulation of truss behind developing code for modal analysis 58

4.3.3 Problem data 58

4.3.4 Procedure for writing code 63

iii

 4.4 Python code for truss structure for static &dynamic analysis 64

 4.5 How the python prints the results 75

 CHAPTER-V

 RESULTS AND DISCUSSION 97

 5.1 Results 97

5.1.1 Results comparision for validadion between ansys apdl and pythoncode 98

 5.1.2 Modal analysis using python code 101

 5.2 Plotting mode shapes 101

 CHAPTER-Ⅵ

 CONCLUSIONS AND FUTURE SCOPE 120

 CHAPTER-Ⅶ

 REFERANCES 121

iv

LIST OF TABLES

Table No Table Description Page No

 1.1 Mode extraction method 9

 4.1 Nodal coordinades 59

 4.2 Element connectivity 60

 4.3 Nodal supports 62

 4.4 Nodal load 62

 4.5 Material properties 63

 5.1 Nodal displacement validation 98

 5.2 Element stress validation 99

 5.3 Reaction froces validation 100

 5.4 Natural frequencies validation 101

v

LIST OF FIGURES

Figure No Figure description Page No

 1.1 Warren truss 4

 1.2 Octet truss 4

 1.3 Pratt truss 5

 1.4 Bowstring truss 5

 1.5 King post truss 6

 1.6 Lenticular truss 6

 1.7 Town’s lattice truss 6

 1.8 Element of truss 7

 3.1 Railway bridge truss 21

 3.2 Ansys file 22

 3.3 Ansys processor 22

 3.4 Ansys element type 23

 3.5 Selection of link 180 element 23

 3.6 Material in steel 24

 3.7 Material property selection 24

 3.8 Adding link section and link area 25

 3.9 Creating truss nodes in active coordinate system 26

 3.10 Creating truss elements in between two nodes 27

 3.11 Railway bridge truss in ansys interface 28

 3.12 Generate support reaction at nodes 28

 3.13 Applying external loads on truss nodes 29

 3.14 Truss diagram with external loads 30

 3.15 Solving truss in current load step 30

 3.16 Solution in current load step 31

 3.17 Selection of style ,size & shape 31

 3.18 Result viewer in ansys interface 32

 3.19 Von mises stress 32

 3.20 Deformed shape of truss 33

vi

 3.21 Nodal displacement in x component 33

 3.22 Nodal displacement in y component 34

 3.23 Nodal displacement in z component 34

 3.24 Nodal solution at global coordinate system 35

 3.25 Ansys file 38

 3.26 Ansys processor 38

 3.27 Ansys element type 39

 3.28 Selection of link 180 element 39

 3.29 Material in steel 40

 3.30 Material property selection 41

 3.31 Adding link section and link area 41

 3.32 Creating truss nodes in active coordinate system 43

 3.33 Creating truss elements in between two nodes 43

 3.34 Modal analysis selection 44

 3.35 Modal extraction method 45

 3.36 Options in modal analysis 45

 3.37 Applied displacements on nodes 46

 3.38 Solving truss in current load step 46

 3.39 Solution in current load step 47

 3.40 Natural frequencies at modes 48

 3.41 Deformed shape of truss 49

 4.1 Displacement of truss at nodes 56

 4.2 Global displacement vector at nodes 56

 4.3 Railway bridge truss 59

 5.1 Deformation of truss in modal alaysis 98

 5.2 Figures of mode shapes 102

vii

1

 CHAPTER- I

 INTRODUCTION

1.0 SCOPE AND BACKGROUND:

It is no secret that problems that were 10 years ago considered intractable except on

dedicated supercomputers, now routinely run on modest commodity personal

computers. However, it is not quite as well recognized that these advances have also

been accompanied by important changes in programming languages, all of which

aim at greatly reducing the effort of writing codes. Scientific applications are no

exceptions; many legacy programs written in Fortran, C or even C++ could

probably be rewritten in a more concise way using a variety of scripting languages,

such as Matlab, Scilab, IDL, Mathematica and others.

Scripting languages have several advantages over ‘conventional’ languages.

(1) scripting languages produce portable codes,

(2) require little or nor memory management responsibility by the programmer and

(3) allow data types to be dynamically set at run time.

All of these factors contribute to making codes less bug prone and so ultimately lead

to increased productivity and shorter code development cycles.

These advantages, unfortunately, have a price; scripting languages tend to be

inferior in raw numerical performance when benchmarked against compiled codes.

Our experience, however, has been that scripting languages, and in particular

Python, often perform above expectation, and are thus well positioned to find the

optimum between satisfactory execution time and acceptable program development

cost.

It is convenient here to distinguish between matrix oriented scripting languages

(Matlab, Scilab, IDL,...) geared towards engineering and scientific applications

from symbolic languages (Mathematica, Maple,...) that are strong in manipulating

mathematical expressions, and general purpose scripting languages (Python,

Perl,...). Although this distinction has become increasingly blurred, Matlab now

allows for some degree of abstract programming while Mathematica improved its

raw numerical performance, it is generally true that languages in group one are

superior in number crunching at the expense, perhaps, of limited programming

flexibility. Languages in group three on the other hand are traditionally used for

2

web programming, as substitutes to shell scripts, for text processing and the

production of graphical user interfaces. Python is one such language although one

could also claim that, thanks to the NumPy module extension, Python has some

overlap with languages in group one, too.

Although extremely useful for rapid prototyping, we have found that matrix oriented

languages are not always suitable for scientific applications. Many objects such as

trees, graphs and sparse matrices do not neatly fit into a matrix cast. In dealing with

unstructured meshes for instance, there can be an arbitrary number of connections

between a node and its neighbors, which may only be known at run time. These are

typical cases where Python nested structures are best suited. We have also found the

dictionary data type in Python, where values are accessed by keys, extremely useful.

Dictionaries (or hash tables) can grow dynamically during a calculation. Keys can

be (immutable) aggregate objects, including strings, integers, doubles, a list, or a

mixture of these. Finally, Python is unique in fully supporting (yet not enforcing)

object oriented programming. The usual arithmetic operators can be overloaded as

in C++. However, in addition to C++ the slicing operators such as a(n:m) (available

in Fortran 90 and Matlab) can also be overloaded.

In summary, Python contains features individually but not globally available in

Fortran 90, Java and C++.

 It is for the above reasons that we have selected Python as the programming

scripting language for analysis of structural problems like plane truss structure.

1.1 INTRODUCTION OF TRUSS

A plane truss is defined as a two dimensional framework of straight prismatic

members connected at their ends by frictionless hinged joints, and subjected to

loads and reactions that act only at the joints and lie in the plane of the structure.

The members of a plane truss are subjected to axial compressive or tensile

forces.Trusses are widely used in bridges, buildings, and other infrastructures.

The function of a truss is to provide turgidity to the skeleton. A truss is an

assembly of metallic elements (bars, rods, pipes, etc). The elements of a truss are

interdependent and exert force on one another, to survive the external load and

burden. A truss is used instead of RCC and concrete beams. Trusses are of

different types with regard to their designs and shapes.

1.2 TYPES OF TRUSS

3

Basically, there are two types of the truss on the basis of their design and
working mechanism.

1. Pitched Truss

2. Parallel Truss

1.2.1 Pitched Truss

In pitched truss, the chord (upper stringer) and bottom (the lower stringer) are

not parallel. The chord of the truss is extended outward like an arch or a cone.

The extended chord of the truss provides extra strength to the truss. The pitched

trusses are used in constructing roofs of the buildings, especially in the area of

snowfall. The cone-shaped roofs do not allow the snowfall dump on the roof

while making the snowfall slip down from the edges of the roof.

1.2.2 Parallel Truss

A parallel truss is made up of the parallel chord and bottom. The chord and

bottom run straight in a parallel path. Both the stringers (chord and bottom) are

interconnected by means of struts (the connecting rods). If compared, the

pitched trusses are stronger than the parallel truss. A parallel truss is generally

used instead of girders and beams.

1.3 BASIC TYPES OF TRUSS

1. Warren Truss

2. Octet Truss

3. Prat Truss

4. Bowstring Truss

5. King post Truss

6. Lenticular Truss

7. Town’s Lattice Truss

8. Vierendeel Truss

1.3.1 Warren Truss:

It is a very simple type of trusses, in which the truss members form a series of

equilateral triangles. These are included in the category of the parallel truss.

4

 Fig 1.1 warren truss

1.3.2 Octet Truss:

In this type of trusses, the truss members are made up of all equivalent

equilateral triangles. This is a very complicated truss, in which each triangle is

associated with the other in multi-dimensions. This type of truss is strongest as

compared to the rest of the types. This type of trusses is designed with very high

skill and is very difficult to understand.

 Fig 1.2 octet truss

1.3.3 Pratt Truss:

In 1844, the engineers of the Boston railway track designed it. Two types of

members are used in this truss. One is vertical and the other is a diagonal

member. The two types of members consecutively, follow one another. The

vertical members are for compression and the diagonal members are for

responding tension.

5

 Fig 1.3 pratt truss

1.3.4 Bowstring Truss:

Bowing Strings are used in this type of trusses. The bowstrings act as an arch.

These strings give extra turgidity to the truss. These were, first used in World

War II. The need for such type of trusses was felt, the curved roof of aircraft was

to be designed.

 Fig 1.4 bowstring truss

1.3.5 King post Truss:

In this type of trusses, two angled members/struts support a vertical strut. It is

very simple to design but frequently used truss. In this design, the vertical

member/strut is called Kingpost.

 Fig 1.5 king poss truss

6

1.3.6 Lenticular Truss:

Lenticular Truss was, first time used in the Gaunless Railway bridge of

Stockholm and Darlington in 1823. In this type the chord and the bottom, both

are arched and connect with each other at both ends.

 Fig 1.6 lenticular truss

1.3.7 Town’s Lattice Truss:

In these trusses, the inclined members are used which cross over one another at

frequent points. An American architect “Itheal Town” designed it, this is why is

known after his name.

 Fig 1.7 town’s lattice truss

1.4 ELEMENTS OF TRUSS

Almost all the trusses are made up of three fundamental components. The chord,

the bottom, and the members.

7

1. Upper stringer in a truss is called the chord.

2. The lower stringer of the truss is called the bottom.

3. Members, also called struts are the bars, rod, and strips that connect the chord

and bottom of the truss.

 Fig 1.8 element of truss

1.5 WHAT IS FEA

Finite Element Analysis is a mathematical representation of a physical system

comprising a part/assembly (model), material properties, and applicable

boundary conditions {collectively referred to as pre-processing}, the solution of

that mathematical representation {solving}, and the study of results of that

solution {post-processing}. Simple shapes and simple problems can be, and

often are, done by hand. Most real world parts and assemblies are far too

complex to do accurately, let alone quickly, without use of a computer and

appropriate analysis software.

1.6 MODAL ANALYSIS

 A technique used to determine a structure’s vibration characteristics: – Natural

frequencies – Mode shapes – Mode participation factors (how much a given

mode participates in a given direction). It is Most fundamental of all the

dynamic analysis types.

1.6.1 Benefits of modal analysis:

Allows the design to avoid resonant vibrations or to vibrate at a specified

frequency (speakers, for example). Gives engineers an idea of how the design

will respond to different types of dynamic loads. Helps in calculating solution

controls (time steps, etc.) for other dynamic analyses. Recommendation:

8

Because a structure’s vibration characteristics determine how it responds to any
type of dynamic load, always perform a modal analysis first before trying any

other dynamic analysis.

1.6.2 Terminology & Concepts:

General equation of motion:

[M]{u} + [C]{u} + [K]{u} = {F(t)}

Assume free vibrations and ignore damping:

[M]{u} +[K]{u} = {0}

Assume harmonic motion (i.e.u = Usin(ωt))

([K] [M]){u} {0}

The roots of this equation are ωi2 , the eigenvalues, where i ranges from 1 to

number of DOF. Corresponding vectors are {u}i , the eigenvectors.

The square roots of the eigenvalues are ωi , the structure’s natural circular

frequencies (radians/sec). Natural frequencies fi are then calculated as fi = ωi /2π

(cycles/sec). It is the natural frequencies fi that are input by the user and output

by ANSYS.

The eigenvectors {u}i represent the mode shapes - the shape assumed by the

structure when vibrating at frequency fi .

1.6.3 Mode Extraction:

It is the term used to describe the calculation of eigenvalues and eigenvectors.

1.6.4 Mode Expansion:

It has a dual meaning. For the reduced method, mode expansion means

calculating the full mode shapes from the reduced mode shapes. For all other

methods, mode expansion simply means writing mode shapes to the results file.

1.6.5 Mode Extraction Methods:

Several mode extraction methods are available in ANSYS:

Block Lanczos (default)

9

Subspace

PowerDynamics

Reduced

Unsymmetric

Damped (full)

QR Damped

Which method you choose depends primarily on the model size (relative to your

computer resources) and the particular application.

 Table 1.1 mode extraction methods

Extraction

method

Linear

Solver

Used Remarks

Block

Lanczos

Sparse

Matrix

Recommended for most

applications; Most stable;

Powerdynami

cs

PCG

solver

Same as subspace but with PCG

solver; Can

handle very large models; Lumped

mass only; May

miss modes; Modes cannot be used

in

subsequent spectrum and PSD

analyses

Reduced

Frontal

Solver

In general fastest; Accuracy

depends on Master

DOF selection; Limitations similar

to Subspace;

Not recommended due to expertise

required in

selecting Master DOF.

10

1.6.6 Modal Analysis Procedure:

Four main steps in a modal analysis:

Build the model

Choose analysis type and options

Apply boundary conditions and solve

Review results.

Build the model :

Remember density!

Linear elements and materials only. Nonlinearities are ignored.

Choose analysis type and options

Enter Solution and choose modal analysis.

Mode extraction options*

Mode expansion options*

 Other options*

Mode extraction options

Method: Block Lanczos recommended for most applications.

Number of modes: Must be specified (except Reduced method).

Frequency range: Defaults to entire range, but can be limited to a desired range

(FREQB to FREQE). Specification of a frequency range requires additional

factorizations and it is typically faster to simply request a number of modes

which will overlap the desired range.

Normalization:

Only the shape of the DOF solution has real meaning. It is therefore customary

to normalize them for numerical efficiency or user convenience.

 Modes are normalized either to the mass matrix or to a unit matrix (unity). –

Normalization to mass matrix is the default, and is required for a spectrum

analysis or if a subsequent mode superposition analysis is planned. – Choose

normalization to unity when you want to easily compare relative values of

displacements throughout the structure.

Modes normalized to unity cannot be used in subsequent mode superposition

analyses (transient, harmonic, spectrum or random vibration).

11

Mode expansion:

You need to expand mode shapes if you want to do any of the following:

Have element stresses calculated.

Do a subsequent spectrum or mode superposition analysis.

1.6.7 Other analysis options:

Lumped mass matrix – Mainly used for slender beams and thin shells, or for

wave propagation problems. – Automatically chosen for PowerDynamics

method.

Pre-stress effects – For Pre-stressed modal analysis (discussed later).

 Full damping – Used only if Damped mode extraction method is chosen. –

Damping ratio, alpha damping, and beta damping are allowed. – BEAM4 and

PIPE16 also allow gyroscopic damping.

QR damping – All types of damping are allowed.

Apply boundary conditions and solve

Displacement constraints

 External loads

 However, ANSYS creates a load vector which you can use in a subsequent

mode superposition analysis.

Review results using POST1, the general postprocessor

List natural frequencies

View mode shapes

Review participation factors

Review modal stresses.

1.7 WHY PYTHON FOR SCENTIFIC COMPUTERING?

The design focus on the Python language is on productivity and code readability,

for example through:

 • Interactive python console

• Very clear, readable syntax through whitespace indentation

 • Strong introspection capabilities

• Full modularity, supporting hierarchical packages

• Exception-based error handling

12

• Dynamic data types & automatic memory management

As Python is an interpreted language, and it runs many times slower than

compiled code, one might ask why anybody should consider such a ’slow’

language for computer simulations?

1.7.1 Numerical Python:

The NumPy package (read as NUMericalPYthon) provides access to

 • a new data structure called arrays which allow efficient vector and matrix

operations.

 It also provides a number of linear algebra operations (such as solving of

systems of linear equations, computation of Eigenvectors and Eigenvalues).

There are two other implementations that provide nearly the same functionality

as NumPy. These are called “Numeric” and “numarray”:

• Numeric was the first provision of a set of numerical methods (similar to

Matlab) for Python. It evolved from a PhD project.

• Numarray is a re-implementation of Numeric with certain improvements (but

for our purposes both Numeric and Numarray behave virtually identical).

 • Early in 2006 it was decided to merge the best aspects of Numeric and

Numarray into the Scientific Python (scipy) package and to provide (a hopefully

“final”) array data type under the module name “NumPy”. We will use in the

following materials the “NumPy” package as provided by (new) SciPy.

If for some reason this doesn’t work for you, chances are that your SciPy is too

old. In that case, you will find that either “Numeric” or “numarray” is installed

and should provide nearly the same capabilities.

1.7.2 Visualisation in Python:

The Python library Matplotlib is a python 2D plotting library which produces

publication quality figures in a variety of hardcopy formats and interactive

environments. Matplotlib tries to make easy things easy and hard things

possible. You can generate plots, histograms, power spectra, bar charts,

errorcharts, scatterplots, etc, with just a few lines of code. For more detailed

information, check these links

13

• A very nice introduction in the object oriented Matplotlib interface, and

summary of all important ways of changing style, figure size, linewidth, etc.

This is a useful reference:

http://nbviewer.ipython.org/urls/raw.github.com/jrjohansson/scientific-python-

lectures/master/Lecture4-Matplotlib.ipynb

• Matplotlib tutorial http://matplotlib.sourceforge.net/users/index.html

• Matplotlib home page http://matplotlib.sourceforge.net

• List of simple screenshot examples

http://matplotlib.sourceforge.net/users/screenshots.html

• Extended thumbnail gallery of examples

http://matplotlib.sourceforge.net/gallery.html

1.7.3 Numerical Methods using Python SciPy:

scipy package (SCIentificPYthon) which provides a multitude of numerical

algorithms

 Many of the numerical algorithms available through scipy and numpy are

provided by established compiled libraries which are often written in Fortran or

C. They will thus execute much faster than pure Python code (which is

interpreted). As a rule of thumb, we expect compiled code to be two orders of

magnitude faster than pure Python code.

http://nbviewer.ipython.org/urls/raw.github.com/jrjohansson/scientific-python-lectures/master/Lecture4-Matplotlib.ipynb
http://nbviewer.ipython.org/urls/raw.github.com/jrjohansson/scientific-python-lectures/master/Lecture4-Matplotlib.ipynb
http://matplotlib.sourceforge.net/users/index.html
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/users/screenshots.html
http://matplotlib.sourceforge.net/gallery.html

14

CHAPTER-II

LITERATURE REVIEW

Dorival et.al.,[1] investigated that the Generalized Finite Element Method

(GFEM) is a numerical method based on the Finite Element Method (FEM),

presenting as its main feature the possibility of improving the solution by means

of local enrichment functions. In spite of its advantages, the method demands a

complex data structure, which can be especially benefited by the Object-

Oriented Programming (OOP). Even though the OOP for the traditional FEM

has been extensively described in the technical literature, specific design issues

related to the GFEM are yet little discussed and not clearly defined. Inthe

present article it is described an Object-Oriented (OO) class design for the

GFEM, aiming to achieve a computational code that presents a flexible class

structure, circumventing the difficulties associated to the method characteristics.

The proposed design is evaluated by means of some numerical examples,

computed using a code implemented in Python programming language.

Aleveset.al.,[2]The objective computing project was created with the intention

of writing a fully interactive-adaptive finite element program using the object

oriented programming philosophy. In a first phase of the project, a graphical

environment was developed to simplify and generalize the interactive

programming concept. The resulting interface library gives the programmer easy

access to graphical user interface tools such as windows, menus and dialogs. In

order to improve programmer efficiency, the same interface library is being

implemented to run under various existing toolboxes such as Macintosh, MS-

Windows, OSF/Motif and others. During the second phase of the project, an

innovative finite element data structure is developed which will be used as a

finite element research platform

Bordaset.al.,[3]This paper presents and exercises a general structure for an

object‐oriented‐enriched finite element code. The programming environment

provides a robust tool for extended finite element (XFEM) computations and a

modular and extensible system. The programme structure has been designed to

meet all natural requirements for modularity, extensibility, and robustness. To

facilitate mesh–geometry interactions with hundreds of enrichment items, a

mesh generator and mesh database are included. The salient features of the

programme are: flexibility in the integration schemes (subtriangles,

15

subquadrilaterals, independent near‐tip, and discontinuous quadrature rules);
domain integral methods for homogeneous and bi‐material interface cracks

arbitrarily oriented with respect to the mesh; geometry is described and updated

by level sets, vector level sets or a standard method; standard and enriched

approximations are independent; enrichment detection schemes: topological,

geometrical, narrow‐band, etc.; multi‐material problem with an arbitrary number

of interfaces and slip‐interfaces; non‐linear material models such as J2 plasticity

with linear, isotropic and kinematic hardening. To illustrate the possible

applications of our paradigm, we present 2D linear elastic fracture mechanics for

hundreds of cracks with local near‐tip refinement, and crack propagation in two

dimensions as well as complex 3D industrial problems.

Duarteet.al.,[4]A new methodology to build discrete models of boundary-value

problems is presented. The h-pcloud method is applicable to arbitrary domains

and employs only a scattered set of nodes to build approximate solutions to

BVPs. This new method uses radial basis functions of varying size of supports

and with polynomialreproducing properties of arbitrary order. The

approximating properties of the h-p cloud functions are investigated in this

article and a several theorems concerning these properties are presented. Moving

least squares interpolants are used to build a partition of unity on the domain of

interest. These functions are then used to construct, at a very low cost, trial and

test functions for Galerkinapproximations. The method exhibits a very high rate

of convergence and has a greater -exibility than traditional h-p finite element

methods. Several numerical experiments in I-D and 2-D are also presented.

Tom et.al.,[5]Partial differential equations (PDEs)—such as the Navier–Stokes

equations in fluid mechanics, the Maxwell equations in electromagnetism, and

the Schrödinger equation in quantum mechanics—are the basic building blocks

of modern physics and engineering. The finite element method (FEM) is a

flexible computational technique for the discretization and solution of PDEs,

especially in the case of complex spatial domains. Conceptually, the FEM

transforms a time-independent (or temporally discretized) PDE into a system of

linear equations Ax= b. scikit-fem is a lightweight Python library for the

creation, or assembly, of the finite element matrix A and vector b. The user loads

a computational mesh, picks suitable basis functions, and provides the PDE’s

weak formulation (Logg, Mardal, Wells, & others, 2012). This results in sparse

matrices and vectors compatible with the SciPy (Virtanen et al., 2020)

ecosystem.

Cimrmanet.al.,[6]SfePy (simple finite elements in Python) is a software for

solving various kinds of problems described by partial differential equations in

one, two, or three spatial dimensions by the finite element method. Its source

code is mostly (85%) Python and relies on fast vectorized operations provided

by the NumPy package. For a particular problem, two interfaces can be used: a

declarative application programming interface (API), where problem

description/definition files (Python modules) are used to define a calculation,

16

and an imperative API, that can be used for interactive commands, or in scripts
and libraries. After outlining the SfePy package development, the paper

introduces its implementation, structure, and general features. The components

for defining a partial differential equation are described using an example of a

simple heat conduction problem. Specifically, the declarative API of SfePy is

presented in the example. To illustrate one of SfePy’s main assets, the

framework for implementing complex multiscale models based on the theory of

homogenization, an example of a two-scale piezoelastic model is presented,

showing both the mathematical description of the problem and the

corresponding code.

Hunter et.al.,[7]Matplotlib is a 2D graphics package for Python for application

development, interactive scripting, and publication-quality image generation

across user interfaces and operating systems.

2.0 OVERVIEW OF THE PROJECT

1. Doing model analysis for any structure is very difficult.

2. In this work, first we are going to investigate modal values for a plane truss

structure using ANSYS software.

3. Then we will develop Python scripting for getting model values.

4. For validation we will compare results obtained by python scripting and ANSYS

software.

5. If time persists we will compare with MATLAB to conclude that the Python

Scriptting is best tool for analysis of structural problems.

17

 CHAPTER-III

ANALYSIS OF TRUSS USING ANSYS SOFTWARE

3.0 ANSYS

ANSYS is a general purpose finite element modelling package for numerically

solving a wide variety of mechanical problems. These problems include:

static/dynamic structural analysis (both linear aswell as acoustic and electro-

magnetic problems.Ansys develops and markets engineering simulation

software for use across the product life cycle. Ansys Mechanical finite

element analysis software is used to simulate computer models of structures,

electronics, or machine components for analysing strength, toughness,

elasticity, temperature distribution, electromagnetism, fluid flow, and other

attributes. Ansys is used to determine how a product will function with

different specifications, without building test products or conducting crash

tests. For example , Ansys software may simulate how a bridge will hold

up after years of traffic, how to best process salmon in a cannery to

reduce waste, or how to design a slide that uses less material without

sacrificing safety.Typically Ansys users break down larger structures into

smallcomponents that are each modelled and tested individually.A user may

start by defining thedimensions of an object, and then adding weight, pressure,

temperature and other physical properties. Finally, the Ansys software simulates

and analyses movement, fatigue, fractures, fluid flow, temperature distribution,

electromagnetic efficiency and other effects over time.

18

Ansys also develops software for data management and backup, academic

research and teaching. Ansys software is sold on an annual subscription basis.

In general, a finite element solution may be broken into the following three

stages.This is a general guideline that can be used for setting up any finite

element analysis.

1. Preprocessing defining the problem ; The major steps in preprocessing

aregiven below:

 →Define keypoints/lines/areas/volumes

 → Define element type and material/geometric properties

 → Mesh lines/areas/volumes as required

The amount of detail required will depend on the dimensionality of the

analysis (i.e. 1D, 2D, axi-symmetric, 3D).

Solution: assigning loads, constraints and solving here we specify the loads

(point or pressure), constraints (translational and rotational) and finally solve the

resulting set of equations.

2.Postprocessing processing further and viewing of the results in this stage

one

may wish to see:

 → Lists of nodal displacements

 → Element forces and moments

 →Deflection plots

 →Stress contour diagrams

ANSYS uses certain inputs and evaluates the product behaviour to the physics

that you are testing it in. It is a general purpose software used to simulate the

interactions between various physics like dynamics, statics, fluids,

electromagnetic, thermal, and vibrations. ANSYS typically creates the user an

opportunity to create a virtual environment to simulate the tests or working

conditions of the products before manufacturing the prototypes. This would

certainly reduce the cost of producing prototypes and mainly the time. In this

competitive world the accuracy and time are the most deciding factors for the

19

company or the organization to sustain. ANSYS helps in increasing the accuracy

and decreasing the time of outcome of the final product.

3.1 ADVANTAGES

1. ANSYS can import all kinds of CAD geometries (3D and 2D) from different

 CAD software's like Design Modeler and Space Claim which makes the work

 flow even smoother.

2. ANSYS has the capability of performing advanced engineering simulations

 accurately and realistic in nature by its variety of contact algorithms, time

 dependent simulations and non linear material models.

3. ANSYS has the capability of integrating various physics into one platform

 and perform the analysis. Just like integrating a thermal analysis with

 structural and integrating fluid flow analysis with thermal and structural,etc.,

4. ANSYS now has featured its development into a product called ANSYS

 AIM, which is capable of performing multi physics simulation. It is a single

 platform which can integrate all kinds of physics and perform simulations.

5. ANSYS has its own customization tool called ACT which uses python as a

 background scripting language and used in creating customized user

 required features in it.

6.ANSYS hasthe capability to optimize various features like the geometrical

 design, boundary conditions and analyse the behaviour of the product under

 various criterion's.

3.2 PROBLEM STATEMENT

20

 Fig 3.1 railway bridge truss

3.3 STRUCTURAL ANALYSIS OF TRUSS

Software used:- ANSYS 2021 R1.

Presteps:-Simulation environment: ANSYS

File management :working directory:-C\ANSYS\TRUSS

Job Name:-TRUSS01< Run

 Fig 3.2 ansys file

21

Step 1:-firstly, we click on Preferences in main menu and then we select the type

of analysis by choosing structural and proceed on by clicking Ok.

 Fig 3.3 ansys preprocessor

Step 2:-Now considering preprocessor we select the Element type , and click on

Add/Edit/Delete. We add link and select Link 3D finitstn 180 as element type.

 Fig 3.4 ansys element types

22

 Fig 3.5 selection of link 180 element

Step 3:-In this we choose the Material props and Select the available Material

models under StructuralLinearElasticIsotropic and click Ok.

We assign the material property values for the material 1. Ex= 200GPA

,PRXY=0.3  Ok

The material taken in steel

23

 Fig 3.6 material in steel

 Fig 3.7 material property selection

Step 4:- We go toSections and under it we click on Link and then Add. We take

the add link section with ID as 1.

And , we name the section as ‘Rect’ and take the Link area as ‘3250’ and click

Ok.

24

 Fig 3.8 adding link section and link area

Step 5:-Now click on Modelling and select Create. We can see other functions

below, select Nodes and then click on InactiveCS. A window will appear as

shown in belowfig ,and we can choose the nodes and assign the values for the

nodes.

Node number 1 at X = 0 , Y = 0 , Z = 0  Apply

Node number 2 at X = 1800 , Y = 3118 , Z = 0  Apply

Node number 3 at X = 3600 , Y = 0 , Z = 0  Apply

Node number 4 at X = 5400 , Y = 3118 , Z = 0  Apply

Node number 5 at X = 7200 , Y = 0 , Z = 0  Apply

Node number 6 at X = 9000 , Y = 3118 , Z = 0  Apply

Node number 7 at X = 10800 , Y = 0 , Z = 0  Apply

Node number 8 at X = 12600 , Y = 3118 , Z = 0  Apply

Node number 9 at X = 14400 , Y = 0 , Z = 0  Apply

Node number 10 at X = 16200 , Y = 3118 , Z = 0  Apply

Node number 11 at X = 18000 , Y = 0 , Z = 0  Apply

Node number 12 at X = 19800 , Y = 3118 , Z = 0  Apply

Node number 13 at X = 21600 , Y = 0 , Z = 0  Apply

Node number 14 at X = 23400 , Y = 3118 , Z = 0  Apply

Node number 15 at X = 25200 , Y = 0 , Z = 0  Apply

Node number 16 at X = 27000 , Y = 3118 , Z = 0  Apply

Node number 17 at X = 28800 , Y = 0 , Z = 0  Apply

Node number 18 at X = 30600 , Y = 3118 , Z = 0  Apply

Node number 19 at X = 32400 , Y = 0 , Z = 0  Apply Ok

25

 Fig 3.9 creating truss nodes in active coordinating system

Step 6:-We click on Element tool and under that we click on Auto numbered

and below that we select Thru nodes and Select the nodes 1&2 and click on

Apply . In the same way we select thenodes 1&3 and click on Apply.

We Repeat the same procedure.

26

 Fig 3.10 creating truss elements in between two nodes

Step 7:-Now on the main menu we select ‘Loads’ and Define the loads and

click on Apply.Apply the‘Structural’ tool and select ‘Displacement’ and then

‘On nodes’. Now select node 1 and clickOk . A pop-up window opens , the

DOF’S needs to be constrained so we select All DOF’S and click Apply.

Then select node 7  Ok  UY  Ok.

 Fig 3.11 railway bridge truss in ansys interface

27

 Fig 3.12 generate support reaction at nodes

Step 8:- Force / Moment  On nodes  Select Node 1  Ok  FY  -

280000  Apply.

Select node 3  Ok  FY  -210000  Apply.

Select node 5  Ok  FY  -210000  Apply.

Select node 7  Ok  FY  -210000  Apply.

Select node 9  Ok  FY  -210000  Apply.

Select node 11  Ok  FY  -210000  Apply.

Select node 13  Ok  FY  -210000  Apply.

Select node 15  Ok  FY  -210000  Apply.

Select node 17  Ok  FY  -210000  Apply.

Select node 19  Ok  FY  -360000  Apply  Ok.

28

 Fig 3.13 applying external loads on truss nodes

 Fig 3.14 truss diagram with external loads

29

Step 9:- In ‘Solution’menu , we click on ‘Solve’and below it select‘Current

LS’, a window will open showing solution options. Now press Ok to start the

Solution . it finally shows ‘Solution is done’ and then we ‘Close’.

 Fig 3.15 solving truss in current load step

 Fig 3.16 solution truss in current load step

30

Step 10:-In the above tool bar click on ‘Plot ctrlS’and select ‘Style’ in which we

aagain select ‘Size & Shape’ and finally Display of element is done and click

Ok.

 Fig 3.17 selection of style,size &shape

Step 11:-We click on ‘Result viewer’ from menu and after that we chose a

result item and select ‘DOF solution’then we check the ‘Displacement vector

sum ‘ and finally Plot result.

 Fig 3.18 result viewer in ansys interface

31

Step 12:-Here we check the Stress loading on the truss structure and then we

checkVon misses stress shown below and Plot the results.

 Fig 3.19 von mises stress

Step 13:-General post proc  Plot results  Deformed shape

Def+Undeformed Ok.

 Fig 3.20 deformed shape of truss

32

Step 14:-At last we select ‘List results’ and under that we click on ‘Reaction

solu’ which shows All items and total reaction solu listing and click Ok.Nodal

 Fig 3.21 nodel displacement in x-componet

 Fig 3.22 nodel displacement in y-component

33

 Fig 3.23 nodel displacement in z-component

 Fig 3.24 nodel solution at global coordinate system

34

3.3.1 Nodal displacement results

PRINT U NODAL SOLUTION PER NODE

 ***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

 LOAD STEP= 1 SUBSTEP= 1

 TIME= 1.0000 LOAD CASE= 0

 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL

COORDINATE SYSTEM

 NODE UX UY UZ USUM

 1 0.0000 0.0000 0.0000 0.0000

 2 80.572 -52.717 0.0000 96.286

 3 2.6857 -103.88 0.0000 103.92

 4 75.201 -150.40 0.0000 168.15

 5 10.072 -192.65 0.0000 192.91

 6 65.801 -227.92 0.0000 237.23

 7 20.815 -257.00 0.0000 257.84

 8 53.715 -277.54 0.0000 282.69

 9 33.572 -290.72 0.0000 292.65

 10 40.286 -294.59 0.0000 297.34

 11 47.001 -290.72 0.0000 294.49

 12 26.857 -277.54 0.0000 278.84

 13 59.758 -257.00 0.0000 263.85

 14 14.772 -227.92 0.0000 228.40

 15 70.501 -192.65 0.0000 205.14

 16 5.3715 -150.40 0.0000 150.49

 17 77.887 -103.88 0.0000 129.84

 18 0.79378E-012 -52.717 0.0000 52.717

 19 80.572 0.0000 0.0000 80.572

 MAXIMUM ABSOLUTE VALUES

 NODE 2 10 0 10

 VALUE 80.572 -294.59 0.0000 297.34

3.3.2 nodal stress results

PRINT S NODAL SOLUTION PER NODE

 ***** POST1 NODAL STRESS LISTING *****

 LOAD STEP= 1 SUBSTEP= 1

 TIME= 1.0000 LOAD CASE= 0

 NODE S1 S2 S3 SINT SEQV

 1 0.0000 0.0000 -74.615 74.615 74.615

 2 0.0000 0.0000 -99.472 99.472 99.472

 3 158.53 0.0000 0.0000 158.53 158.53

 4 0.0000 0.0000 -205.16 205.16 205.16

 5 270.44 0.0000 0.0000 270.44 270.44

35

 6 0.0000 0.0000 -298.42 298.42 298.42

 7 345.05 0.0000 0.0000 345.05 345.05

 8 0.0000 0.0000 -354.37 354.37 354.37

 9 382.35 0.0000 0.0000 382.35 382.35

 10 0.0000 0.0000 -373.02 373.02 373.02

 11 382.35 0.0000 0.0000 382.35 382.35

 12 0.0000 0.0000 -354.37 354.37 354.37

 13 345.05 0.0000 0.0000 345.05 345.05

 14 0.0000 0.0000 -298.42 298.42 298.42

 15 270.44 0.0000 0.0000 270.44 270.44

 16 0.0000 0.0000 -205.16 205.16 205.16

 17 158.53 0.0000 0.0000 158.53 158.53

 18 0.0000 0.0000 -99.472 99.472 99.472

 19 0.0000 0.0000 -74.615 74.615 74.615

 MINIMUM VALUES

 NODE 1 1 10 1 1

 VALUE 0.0000 0.0000 -373.02 74.615 74.615

 MAXIMUM VALUES

 NODE 9 1 3 9 9

 VALUE 382.35 0.0000 0.0000 382.35 382.35

3.3.3 ELEMENTARY STRESS RESULTS

PRINT ELEMENT TABLE ITEMS PER ELEMENT

STAT ELEM CURRENT SAXL

1 149.21

2 410.32

3 596.83

4 708.74

5 746.04

6 708.74

7 596.83

8 410.32

9 149.21

10 -298.42

11 -522.23

12 -671.44

13 -746.04

14 -746.04

15 -671.44

16 -522.23

17 -298.42

18 -298.44

19 298.44

20 -223.83

21 223.83

22 -149.22

23 149.22

24 -74.610

25 74.610

26 0.0000

27 0.27756E-011

36

28 74.610

29 -74.610

30 149.22

31 -149.22

32 223.83

33 -223.83

34 298.44

35 -298.44

MINUMUM VALUES

ELEM 13

VALUE -746.04

MAXIMUM VALUES

ELEM 5

VALUE 746.04

3.4 MODAL ANALYSIS OF TRUSS

Software used:- ANSYS 2021 R1.

Presteps:-Simulation environment: ANSYS

File management :working directory:-C\ANSYS\TRUSS

Job Name:-TRUSS01< Run

 Fig 3.25 ansys file

Step 1:-firstly, we click on Preferences in main menu and then we select the type

of analysis by choosing structural and proceed on by clicking Ok

37

.

 Fig 3.26 ansys preprocessor

Step 2:-Now considering preprocessor we select the Element type , and click on

Add/Edit/Delete. We add link and select Link 3D finitstn 180 as element type.

 Fig 3.27 ansys element types

38

 Fig 3.28 selection of link 180 element

Step 3:-In this we choose the Material props and Select the available Material

models under StructuralLinearElasticIsotropic and click Ok.

We assign the material property values for the material 1. Ex= 200GPA

,PRXY=0.3  Ok

The material taken in steel

 Fig 3.29 material in steel

39

 Fig 3.30 material property selection

Step 4:- We go toSections and under it we click on Link and then Add. We take

the add link section with ID as 1.

And , we name the section as ‘Rect’ and take the Link area as ‘3250’ and click

Ok.

 Fig 3.31 adding link section and link area

40

Step 5:-Now click on Modelling and select Create. We can see other functions

below, select Nodes and then click on InactiveCS. A window will appear as

shown in belowfig ,and we can choose the nodes and assign the values for the

nodes.

Node number 1 at X = 0 , Y = 0 , Z = 0  Apply

Node number 2 at X = 1800 , Y = 3118 , Z = 0  Apply

Node number 3 at X = 3600 , Y = 0 , Z = 0  Apply

Node number 4 at X = 5400 , Y = 3118 , Z = 0  Apply

Node number 5 at X = 7200 , Y = 0 , Z = 0  Apply

Node number 6 at X = 9000 , Y = 3118 , Z = 0  Apply

Node number 7 at X = 10800 , Y = 0 , Z = 0  Apply

Node number 8 at X = 12600 , Y = 3118 , Z = 0  Apply

Node number 9 at X = 14400 , Y = 0 , Z = 0  Apply

Node number 10 at X = 16200 , Y = 3118 , Z = 0  Apply

Node number 11 at X = 18000 , Y = 0 , Z = 0  Apply

Node number 12 at X = 19800 , Y = 3118 , Z = 0  Apply

Node number 13 at X = 21600 , Y = 0 , Z = 0  Apply

Node number 14 at X = 23400 , Y = 3118 , Z = 0  Apply

Node number 15 at X = 25200 , Y = 0 , Z = 0  Apply

Node number 16 at X = 27000 , Y = 3118 , Z = 0  Apply

Node number 17 at X = 28800 , Y = 0 , Z = 0  Apply

Node number 18 at X = 30600 , Y = 3118 , Z = 0  Apply

Node number 19 at X = 32400 , Y = 0 , Z = 0  Apply Ok

41

 Fig 3.32 creating truss nodes in active coordinating system

Step 6:-We click on Element tool and under that we click on Auto numbered

and below that we select Thru nodes and Select the nodes 1&2 and click on

Apply . In the same way we select thenodes 1&3 and click on Apply.

We Repeat the same procedure.

 Fig 3.33 creating truss elements in between two nodes

42

Step-7:-Click on ‘Solution’ in main menu and select the ‘Analysis type’ as

‘New Analysis’ and then we select ‘modal’ and click Ok.

 Fig 3.34 model analysis selection

Step-8:-Now we click on ‘Analysis option’ and then we select the mode

extraction method as ‘Block lanczos’ we assign tthe No of modes to extract as

40 and NMOD E no of modes to expand- as and click Ok.

 Fig 3.35 modl extraction method

43

Step-9:-In this step we assign the value 0 for FREQB start Freq(initial shift)

and for FREQE End Freq as 0 and click on Ok.

 Fig 3.36 options in model analysis

Step-10:-Now on the main menu we select ‘Loads’ and Define the loads and

click on Apply. Apply the ‘Structural’ tool and select ‘Displacement’ and then

‘On nodes’. Now select node 1 and click Ok . A pop-up window opens , the

DOF’S needs to be constrained so we select All DOF’S and click Apply.

 Fig 3.37 apply displacements on nodes

44

Step-11:- In ‘Solution’ menu , we click on ‘Solve’ and below it select ‘Current

LS’ , a window will open showing solution options. Now press Ok to start the

Solution . it finally shows ‘Solution is done’ and then we ‘Close’.

 Fig 3.38solving the truss in current load step

 Fig 3.39 solution of truss in current load step

45

Step-12:-We click on General post proc and select ‘Read results’we see the

results ‘By pick’ and select 4result and click onClose.

 Fig 3.40 natural frequencies at modes

Step- 13:-We click on Plot results and select Deformed shape after that we

again considerDef+Undeformedand click on Ok.

Step-14:-We read results By pic and select 5result and click ‘Close’.

46

Step-15:-We click on Plot results and select Deformed shape after that we

again consider Def+Undeformed and click on Ok.

Step-16:-Now we repeat the steps 14 and 15 for the nodes 6-40.

Step-17:-Click on plot ctrls and below it click on deformed shape and select

‘Animate’ and chose Mode shape. Now we give the animation data, No of

frames to create as 10 and Time delay(seconds) as 0.5 secs. We chose

acceleration type as linear . the nodal solution data is given by selecting ‘DOF

solution’ and then click on deformed shape and click Ok.

 Fig 3.41 deformed shape of truss

 3.4.1 REULTS OF MODAL ANALYSIS

***** INDEX OF DATA SETS ON RESULTS FILE *****

 SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE

 1 0.0000 1 1 1

 2 0.0000 1 2 2

 3 0.0000 1 3 3

 4 0.0000 1 4 4

 5 0.0000 1 5 5

47

 6 0.23237E-07 1 6 6

 7 0.76996E-02 1 7 7

 8 0.22980E-01 1 8 8

 9 0.29891E-01 1 9 9

 10 0.53372E-01 1 10 10

 11 0.75282E-01 1 11 11

 12 0.84342E-01 1 12 12

 13 0.11409 1 13 13

 14 0.12950 1 14 14

 15 0.14925 1 15 15

 16 0.17973 1 16 16

 17 0.18595 1 17 17

 18 0.20085 1 18 18

 19 0.21743 1 19 19

 20 0.22183 1 20 20

 21 0.23885 1 21 21

 22 0.25510 1 22 22

 23 0.25818 1 23 23

48

 24 0.27867 1 24 24

 25 0.28256 1 25 25

 26 0.29536 1 26 26

 27 0.30313 1 27 27

 28 0.33320 1 28 28

 29 0.33579 1 29 29

 30 0.33893 1 30 30

 31 0.34431 1 31 31

 32 0.35306 1 32 32

 33 0.36434 1 33 33

 34 0.37680 1 34 34

 35 0.39635 1 35 35

 36 0.42150 1 36 36

 37 0.43633 1 37 37

 38 0.45981 1 38 38

 39 0.47060 1 39 39

 40 0.48353 1 40 40

49

 CHAPTER – Ⅳ

 FEA ANALYSIS OF TRUSS STRUCTURE USING PYTHON.

4.1 NEED OF PYTHON

Science has basically been divided into theoretical and experimental disciplines, but

during the last several decades computing has emerged as an important part of science.

Scientific computing is closely based to theory, but it has many characteristics in

common with experimental work. It is therefore often viewed as a new third branch of

science. In most fields of science, computational work is a very important complement

to both theory as well as experiments, and nowadays a large majority of both

theoretical and experimental papers involve some numerical calculations, computer

modeling or simulations. In theoretical and experimental sciences there are good

established codes of conducts for how methods as well as results are published and

made available to other scientists. For example, in theoretical sciences, derivations,

proofs as well as results are published in full detail and in experimental sciences, the

methods used as well as results are published. In computational sciences there are not

yet any well established guidelines for how source code as well as generated data

should be handled. For example, it is relatively rare that source code used in

simulations for published papers are provided to readers, in contrast to the open

nature of theoretical and experimental work. It is not uncommon that source code for

simulation software is withheld as well as considered a competitive advantage. So, this

problem has recently started to attract increasing attention, as well as a number of

editorials in high-profile journals have called for increased openness in computational

sciences. Some journals, including Science, have even started to demand of authors to

provide the source code for simulation software used in publications to readers upon

request. Replication (An author of a scientific paper that involves numerical calculations

should be able to rerun the simulations as well as replicate the results upon request

and other scientist should also be able to perform the same calculations as well as

obtain the same results, given the information about the methods used in a

publication.) and reproducibility (The results obtained from numerical simulations

should be reproducible with an independent implementation of the method.) are two

of the cornerstones in the scientific method. In short summary, a sound scientific result

should be reproducible, as well as a sound scientific study should be replicable.

Ensuring replicability as well as reproducibility of scientific simulations is a complicated

problem, but there are some good tools to help with this such as Revision Control

System (RCS) software (git, mercurial (hg) and subversion (svn)) as well as online

repositories for source code, that available as both public and private repositories

(GitHub, Bit bucket and Privately hosted repositories). Python is a modern, general-

purpose, object-oriented, high-level programming language that includes some general

50

characteristics like clean and simple language, expressive language, dynamically typed,

automatic memory management and interpreted. The main advantage is ease of

programming, minimizing the time required to develop, debug, maintain the code,

modular, object-oriented programming, good system for packaging, re-use of code,

documentation tightly integrated with the code, large standard library, and a large

collection of add-on packages. Python has a strong position in scientific computing

because it contains extensive ecosystem of scientific libraries as well as environments

like numpy, scipy, matplotlib etc. Python supports for parallel processing with

processes and threads, Interprocess communication as well as GPU computing and

suitable for use on high-performance computing clusters.

4.1.1 Reasons for using Python for Scientific Computing

o Clear, readable syntax through whitespace indentation

o Interactive python console

o Strong introspection capabilities

o Full modularity, supporting hierarchical packages

o Exception-based error handling

o Dynamic data types & automatic memory management

4.1.2 Reasons for using Python over MATLAB

o Python packages can do similarly everything Matlab can do for signal

processing.

o Python is free and open source but Matlab is a closed-source commercial

product.

o Python is a general-purpose language but Matlab is purely for scientific

computing.

o Python is high level, easy to learn, and so many cool features.

o The demand for Python programmers is increasing Matlab is quite expensive,

that means that code that is written in Matlab can only be used by people with

sufficient funds to buy a license.

o Python contains great libraries, and yet more external libraries are being

developed by Python programmers, scientists, mathematicians, and engineers.

o Similar every programming language other than Matlab, Python uses zero-

based indexing.

o Python code tends to be more compact as well as more readable than Matlab

code.

o OOP in Python is simple and elegant, that offers flexibility but Matlab's OOP

scheme is complex and confusing.

o Python offers a wider set of choices in graphics packages and toolsets as well as

easily integrates better with other languages.

51

4.2 Methodology of Implementing Python for current Project

4.2.1 Jupyter Notebook

o Jupyter Notebook (open source code), which began as the iPython

Notebook project, is a development environment for writing and

executing Python code. Jupyter Notebook is often used for

exploratory data analysis and visualization.

o Project Jupyter is the top-level project name for all of the subprojects

under development, which includes Jupyter Notebook. Jupyter Notebooks

can also run code for other programming languages such as Julia and R.

o The key piece of Jupyter Notebook infrastructure is a web application that

runs locally for creating and sharing documents that contain embedded

code and execution results.

o IPython Notebook was the original project that proved that there was

great demand among data scientists and programmers for an interactive,

repeatable development environment. Jupyter Notebook became the new

official name for the overall project during The Big Split after the IPython

Notebook project matured into distinct submodules such as the interactive

shell, notebook document format and user interface widgets tools.

However, the IPython Notebook name sticks around as the Python

backend for Jupyter Notebook which is seriously confusing if you are

searching the internet and come across both current and old articles that

use all of these names interchangeably.

4.2.2 Python Version

For this current project we used python 3.9.5 version for developing code. Python

is an easy to learn, powerful programming language. It has efficient high-level

data structures and a simple but effective approach to object-oriented

programming. Python’s elegant syntax and dynamic typing, together with its

interpreted nature, make it an ideal language for scripting and rapid application

development in many areas on most platforms.

4.2.3 Python Libraries

A library is a collection of pre-combined codes that can be used iteratively to

reduce the time required to code. They are particularly useful for accessing

the pre-written frequently used codes, instead of writing them from scratch

every single time. Similar to the physical libraries, these are a collection of

reusable resources, which means every library has a root source. This is the

foundation behind the numerous open-source libraries available in

Python. There are many libraries but we are listing the libraries which we

used during this current project.

o NumPy : NumPy is the basic package for scientific computing in Python

that provides multi-dimensional arrays and matrices, broadcasting

http://jupyter.org/
https://github.com/jupyter/notebook
https://www.fullstackpython.com/development-environments.html
https://www.fullstackpython.com/data-analysis.html
https://julialang.org/
https://www.r-project.org/
https://blog.jupyter.org/the-big-split-9d7b88a031a7

52

functions, tools for integrating C/C++, Fortran code, mathematical,

logical, shape manipulation, sorting, selecting, I/O, useful linear algebra,

Fourier transform, random number capabilities, basic statistical operations

and much more. NumPy can be used as an efficient multi-dimensional

container of generic data and it is licensed under the BSD license.

o SciPy library : SciPy library is one of the core packages used by

scientists, analysts, and engineers that provides many user-friendly and

efficient numerical routines such as routines for numerical integration,

optimization, linear algebra, integration, interpolation, special functions,

FFT, signal and image processing. SciPy builds on the NumPy array

object as well as is part of the NumPy stack that includes tools like

Matplotlib, pandas and SymPy. The SciPy library is currently distributed

under the BSD license, as well as its development is supported and

sponsored by an open community of developers. It is also supported by

Numfocus that is a community foundation for supporting reproducible

and accessible science.

o Matplotlib : Matplotlib is a 2D plotting library for the Python

programming language that produces publication quality figures in a

variety of hardcopy formats as well as

o interactive environments across platforms. Matplotlib tries to make easy

things easy as well as hard things possible and provides an object-oriented

API for embedding plots into applications using general-purpose GUI

toolkits such as wxPython, Qt, or GTK+. Matplotlib was mainly written

by John D. Hunter, has an active development community, and is

distributed under a BSD-style license.

4.3 Developing Python code for planar truss structure:

Our project is to develop full working code for any type of truss structure for fea

analysis. Inorder to develop pythode code using jupyter Notebook we considered

Railway Bridge problem from the text book of Introduction to finite elements in

Engineering by Tirupathi R. Chandrapatla and Ashok D Belugundu.

4.3.1 Formulation of Truss behind developing code for static analysis

There are two joints for an arbitrarily inclined single truss element (at an angle q ,

positive counter-clockwise from +ve x- axis). For each joint i, there are two degrees

of freedom, i.e.,a joint can have horizontal displacement u(i) and vertical

displacement v(i) . Hence, for a single truss element, there are 4 degrees of freedom.

The nodal displacement degrees of freedom and the nodal force de grees of freedom

are shown in the following figgure.

53

 Fig 4.1 displacement of truss at nodes

Note that the deformations occurring in the truss members are so small that they are

only axial. The axial displacement of the truss can be resolved along horizontal x-

axis and vertical y-axis. But in our derivation, let us resolve the horizontal and

vertical displacements (in xy-axes) of a joint along and perpendicular to the truss

member (in x’y-axes). Refer to the Figure in the next page. Note ui sinq component

acting towards negative y -direction and all other components acting towards in +ve

x - and y -directions.

 Fig 4.2 global displacement vector at nodes

The above equations can be written in the matrix form as follows

54

 {u¢}=[T]{u}

where [T]is the transformation matrix It is important to note that the

displacements v ¢(i) and v(i) are both zero since there can be no displacements

perpendicular to the length of the member. Also [T]-1 =[T]T

Similarly, we resolve forces along the length of the member (positive x direction)

and perpendicular to the length of the member (positive y direction)

{F '}=[T]{F }

where [T]is the transformation matrix

The arbitrarily inclined truss member can be thought of as a simple bar element

oriented at the same angle q . Hence, we can write the finite element equation for this

inclined bar element (in x¢ycoordinate system) as

Substituting {F ¢}and {u¢}from the previous equations, we can write

[T]{F }=[k¢][T]{u}

Pre-multiplying the above equation by [T]-1 ,

[T]-1 [T]{F}=[T]-1[k¢][T]{u}

55

But [T]-1 [T]=1 and the above equation can be written as

{F }=[k]{u} where [k] [=T]-1 [k¢][T]

Carrying out the matrix multiplication for [k , we obtain

where c =cos2 q and s =sin2 q .

Computation of strain and stress in the truss element

The change in length of the truss member is equal to the change in axial

displacement of the truss member in the x¢yco-ordinate system

4.3.2 Formulation of Truss behind developing code for Modal analysis

The goal of modal analysis in structural mechanics is to determine the natural mode

shapes and frequencies of an object or structure during free vibration. It is common to

use the finite element method (FEM) to perform this analysis because, like other

https://en.wikipedia.org/wiki/Modal_analysis
https://en.wikipedia.org/wiki/Vibration
https://en.wikipedia.org/wiki/Finite_element_method

56

calculations using the FEM, the object being analyzed can have arbitrary shape and the
results of the calculations are acceptable. The types of equations which arise from modal

analysis are those seen in eigensystems. The physical interpretation of

the eigenvalues and eigenvectors which come from solving the system are that they

represent the frequencies and corresponding mode shapes. Sometimes, the only desired

modes are the lowest frequencies because they can be the most prominent modes at

which the object will vibrate, dominating all the higher frequency modes.

It is also possible to test a physical object to determine its natural frequencies and mode

shapes. This is called an Experimental Modal Analysis. The results of the physical test

can be used to calibrate a finite element model to determine if the underlying

assumptions made were correct (for example, correct material properties and boundary

conditions were used).

4.3.3 Problem Data

The fig shows the Railway Bridge Structure having 19 nodes and 35 elements

with equal spacing.

 Fig 4.3 railway bridge truss

 Table 4.1 Nodal coordinates:

Node X(mm) Y(mm)

1 0 0

2 1800 3118

https://en.wikipedia.org/wiki/Eigensystem
https://en.wikipedia.org/wiki/Eigenvalues
https://en.wikipedia.org/wiki/Eigenvectors
https://en.wikipedia.org/wiki/Modal_analysis

57

3 3600 0

4 5400 3118

5 7200 0

6 9000 3118

7 10800 0

8 12600 3118

9 14400 0

10 16200 3118

11 18000 0

12 19800 3118

13 21600 0

14 23400 3118

15 25200 0

16 27000 3118

17 28800 0

18 30600 3118

19 32400 0

 Table 4.2 Element connectivity:

Element Starting Node Ending Node

1 1 3

2 3 5

3 5 7

4 7 9

58

5 9 11

6 11 13

7 13 15

8 15 17

9 17 19

10 2 4

11 4 6

12 6 8

13 8 10

14 10 12

15 12 14

16 14 16

17 16 18

18 1 2

19 2 3

20 3 4

21 4 5

22 5 6

23 6 7

24 7 8

25 8 9

26 9 10

27 10 11

28 11 12

59

29 12 13

30 13 14

31 14 15

32 15 16

33 16 17

34 17 18

35 18 19

 Table 4.3 Nodal Supports:

Node Number Having Support Type of Support Condition

1 Hinged Support

19 Horizontal Roller Support

 Table 4.4 Nodal Load:

Node Number having

Loads

Horizontal Load Fx (N) Vertical Load Fy (N)

1 0 -280000

3 0 -210000

5 0 -210000

7 0 -210000

9 0 -210000

11 0 -210000

13 0 -210000

15 0 -210000

17 0 -210000

60

19 0 -360000

 Table 4.5 Material Properties:

Meterial Used Structural Steel

Modulus of Elasticity 2e5 N/mm
2

Cross sectional Area of element 3250 mm
2

Density 0.00785 gm/mm
3

Poisson's ratio 0.3

4.3.4 Procedure for writing Code

After installing python and Jupyter notebook and import all required libraries for

the project. This code contains two parts. 1
st
 part is static analysis for finding

nodal displacements, element stresses and support reactions. 2
nd

 part is dynamic

analysis for finding natural frequencies and Modal shapes for the truss structure.

The following procedure is adopted for developing code for all truss structures.

o This code is written in Jupyter notebook and can run in any python3

version and this folder is saved as Project2021 and file as

projectcode.ipynb.

o First import all libraries.

o Creating input data for entering all information regarding particular truss

structure.

o Creating Transformation Matrix to find direction cosines length of

element.

o Formulating element stiffness matrix, element mass matrix

o Assembling Global stiffness Matrix, Global Mass Matrix and Global load

vector.

o Finding reduced global stiffness matrix, reduced global mass matix and

reduced load vector.

o Applying Boundary conditions using gauss elimination method and find

nodal displacements, element stresses and support reactions.

o Next creating equations of motion for undamped free linear vibrations to

calculate eigen values and eigen vectors using inverse iteraton method.

o After inputing the data, run the code then the results are printed within

seconds.

61

4.4 Python code for truss structure for Static and Dynamic Analysis

importing libraries

import math

import matplotlib.pyplot as plot

import numpy as np

creating path for a file

file = open(r"D:\Remo desktop\PhD work\Python Project 2021\out.txt","w+")

creating input data and print

noofnodes=int(input("enter the total number of nodes"))

file.write("the total number of nodes= "+str(noofnodes)+ '\n')

noofelements=int(input("enter the total number of elements"))

file.write("the total number of elements= "+str(noofelements)+ '\n')

coordinates={}

for i in range(1,noofnodes+1):

coordinates[i]=list(map(int,input("enter coordinates for node "+ str(i)+ ' in mm

:').split(",")))

 file.write('coordinates for node' + str(i)+ 'in mm : '+ str(coordinates[i])+ '\n')

area=float(input("enter area in mm-square"))

file.write("area in mm-square= "+str(area)+ '\n')

elasticity=float(input("enter the modulus of elasticity in N/mm-square"))

file.write("modulus of elasticity in N/mm-square= "+str(elasticity)+ '\n')

startend={}

for i in range(1,noofelements+1):

startend[i]=list(map(int,input("enter the start node and end node for element "+

str(i)+ ' :').split(",")))

file.write('the start node and end node for element '+ str(i)+ ' :'+str(startend[i])+ '\n')

noofsuppnodes=int(input("enter the total number of nodes having supports"))

file.write('the total number of nodes having supports '+str(noofsuppnodes)+ '\n')

nodesandtypesupport=[]

for i in range(noofsuppnodes):

 x=int(input("enter the node number having support"))

 print("enter the type of support")

 print("h for hinged/fixed")

 print("hrs for horizontal roller support")

 print("vrs for vertical roller support")

 t=input()

 file.write('the node number having support is '+str(x)+' type of support is '+t+ '\n')

62

 nodesandtypesupport.append([x,t.lower()])

print(nodesandtypesupport)

noofloadnodes=int(input("enter total number of loaded nodes "))

file.write('total number of loaded nodes '+str(noofloadnodes)+ '\n')

loadnodes=[]

typeofload={}

for i in range(noofloadnodes):

 x=int(input("enter the node number having load "))

 loadnodes.append(x)

 typeofload[x]=list(map(float,input('enter the horizontal and vertical loads in N

').split(',')))

file.write('the node number having load is '+str(x)+' horizontal and vertical

loads in N is '+str(typeofload[x])+ '\n')

density=float(input("enter density in gm/mm-cube "))

poission=float(input("enter poission's ratio "))

file.write('density in gm/mm-cube is '+str(density)+ '\n')

file.write('poissions ratio is '+str(poission)+ '\n')

calculating length of element direction cosines

lengthofelements={}

cos={}

sin={}

for i in range(1,noofelements+1):

 x,y=startend[i][0],startend[i][1]

 a,b=coordinates[x][0],coordinates[x][1]

 c,d=coordinates[y][0],coordinates[y][1]

 l=math.sqrt((d-b)**2+(c-a)**2)

 lengthofelements[i]=l

 cos[i]=(c-a)/l

 sin[i]=(d-b)/l

for i in range(1,noofelements+1):

 print("length of elements "+str(i)+": ",lengthofelements[i])

 print("cos value of elements "+str(i)+": ",cos[i])

 print("sin value of elements "+str(i)+": ",sin[i])

calculating element stiffness matrix and element mass matrix

stiffness={}

for i in range(1,noofelements+1):

 l=cos[i]

 m=sin[i]

63

 mat=[[l**2,l*m,-l**2,-l*m],[l*m,m**2,-l*m,-m**2],[-l**2,-l*m,l**2,l*m],[-l*m,-

m**2,l*m,m**2]]

 a=(area*elasticity)/lengthofelements[i]

 for j in range(4):

 for k in range(4):

 mat[j][k]=a*mat[j][k]

 print("stiffness matrix of element "+str(i))

 for j in range(4):

 for k in range(4):

 print(mat[j][k],end=' ')

 print()

 print()

 print()

 stiffness[i]=mat

mass={}

for i in range(1,noofelements+1):

 mat=[[2,0,1,0],[0,2,0,1],[1,0,2,0],[0,1,0,2]]

 a=(area*density*lengthofelements[i])/6

 for j in range(4):

 for k in range(4):

 mat[j][k]=a*mat[j][k]

 print("mass matrix of element "+str(i))

 for j in range(4):

 for k in range(4):

 print(mat[j][k],end=' ')

 print()

 print()

 print()

 mass[i]=mat

calculating Global Stiffness matrix and global mass matrix

ndof = noofnodes * 2

print(ndof)

globstifmat=[]

for i in range(ndof):

 globstifmat.append([0]*ndof)

x=0

asinode={}

for i in range(1,noofnodes+1):

 asinode[i]=[x,x+1]

64

 x+=2

e=startend

n=asinode

d={}

for i in range(1,noofelements+1):

 x=[]

 p=e[i]

 q=p[0]

 r=p[1]

 x.extend([n[q][0],n[q][1],n[r][0],n[r][1]])

 d[i]=x

print(d)

 for i in range(ndof):

 for j in range(ndof):

 s=0

 for k in d:

 if(i in d[k] and j in d[k]):

 zzz=stiffness[k]

 s+=zzz[d[k].index(i)][d[k].index(j)]

 globstifmat[i][j]=s

print("global stiffness matrix ")

for j in range(ndof):

 for k in range(ndof):

 print(globstifmat[j][k],end=' ')

 print()

print()

print(len(globstifmat))

print(len(globstifmat[0]))

ndof = noofnodes * 2

print(ndof)

globmassmat=[]

for i in range(ndof):

 globmassmat.append([0]*ndof)

for i in range(ndof):

 for j in range(ndof):

 s=0

 for k in d:

 if(i in d[k] and j in d[k]):

 zzz=mass[k]

65

 s+=zzz[d[k].index(i)][d[k].index(j)]

 globmassmat[i][j]=s

print("global mass matrix ")

for j in range(ndof):

 for k in range(ndof):

 print(globmassmat[j][k],end=' ')

 print()

print()

calculating global load vector

globloadvector=[0]*noofnodes*2

for i in typeofload:

 globloadvector[asinode[i][0]]=typeofload[i][0]

 globloadvector[asinode[i][1]]=typeofload[i][1]

print(globloadvector)

print(nodesandtypesupport)

coltorem=[]

rowtorem=[]

for i in nodesandtypesupport:

 if(i[1]=='h'):

 coltorem.extend(asinode[i[0]])

 rowtorem.extend(asinode[i[0]])

 elif(i[1]=='hrs'):

 coltorem.append(asinode[i[0]][1])

 rowtorem.append(asinode[i[0]][1])

 elif(i[1]=='vrs'):

 coltorem.append(asinode[i[0]][0])

 rowtorem.append(asinode[i[0]][0])

print(coltorem)

print(rowtorem)

npglobstifmat=np.array(globstifmat)

onpglobstifmat=npglobstifmat

print(npglobstifmat)

print(npglobstifmat.shape)

Reducing Global Stiffness Matrix, global mass matrix and global load vector

#removing row

npglobstifmat=np.delete(npglobstifmat, rowtorem, 0)

print(npglobstifmat)

66

print(npglobstifmat.shape)

#removing column

npglobstifmat=np.delete(npglobstifmat, rowtorem, 1)

print(npglobstifmat)

rednpglobstifmat=npglobstifmat

print(npglobstifmat.shape)

#mass matrix removing rows nd columns

npglobmassmat=np.array(globmassmat)

onpglobmassmat=npglobmassmat

print(npglobmassmat)

npglobmassmat=np.delete(npglobmassmat, rowtorem, 0)

print(npglobmassmat)

npglobmassmat=np.delete(npglobmassmat, rowtorem, 1)

print(npglobmassmat)

rednpglobmassmat=npglobmassmat

print(npglobmassmat.shape)

print(globloadvector)

#coverting to column vector

npglobloadvector=np.array(globloadvector)

orignpglobloadvector=npglobloadvector

print(npglobloadvector.shape)

#removing rows

npglobloadvector=np.delete(npglobloadvector, rowtorem, 0)

print(npglobloadvector)

print(npglobloadvector.shape)

Solving KQ = F to determine Nodal Displacments

#linear eqn solving

a = npglobstifmat

b = npglobloadvector

nodaldisplacement = np.linalg.solve(a, b)

print("nodal displacement matrix in mm")

print(nodaldisplacement)

#changing dimension

xx=[]

zz=list(nodaldisplacement)

i=0

s=set(rowtorem)

for j in range(noofnodes*2):

 if(j not in s):

 xx.append(nodaldisplacement[i])

67

 i+=1

 else:

 xx.append(0)

print(xx)

file.write('nodal displacements in mm are ' + str(xx)+'\n')

#changing to col matrix

npnodaldisplacement=np.array(xx)

print(npnodaldisplacement.shape)

print('nodal displacement vector in mm')

print(npnodaldisplacement)

calculating Element Stresses

elementstresses={}

for i in range(1,noofelements+1):

 l=cos[i]

 m=sin[i]

 m1=np.array([-l,-m,l,m]).reshape(1,-1)

 pq=[]

 for z in d[i]:

 pq.append(npnodaldisplacement[z])

 zz=np.array(pq).reshape(-1,1)

 a=(elasticity/lengthofelements[i])

 b=np.matmul(m1,zz)

 elementstresses[i]=a*b

print("element stresses in N/mm-square")

for i in elementstresses:

 print("element"+str(i)+"="+str(elementstresses[i][0][0]))

 file.write('element '+str(i)+' stress in N/mm-square=

'+str(elementstresses[i][0][0])+'\n')

#reaction of support

npglobstifmat=np.array(globstifmat)

x=np.matmul(npglobstifmat,npnodaldisplacement)

y=x-orignpglobloadvector

reactionmat=y

print("reaction at support nodes in N")

print(reactionmat)

j=0

for i in nodesandtypesupport:

68

 if(i[1]=='h'):

 print('reaction node at R'+str(i[0])+"X in N "+str(reactionmat[(i[0]-1)*2]))

 print('reaction node at R'+str(i[0])+"Y in N "+str(reactionmat[(i[0]-1)*2+1]))

 file.write('reaction node at R'+str(i[0])+"X in N "+str(reactionmat[(i[0]-1)*2])+

'\n')

 file.write('reaction node at R'+str(i[0])+"Y in N "+str(reactionmat[(i[0]-

1)*2+1])+ '\n')

 elif(i[1]=='hrs'):

 print('reaction node at R'+str(i[0])+"Y in N "+str(reactionmat[(i[0]-1)*2+1]))

 file.write('reaction node at R'+str(i[0])+"Y in N "+str(reactionmat[(i[0]-

1)*2+1])+ '\n')

 elif(i[1]=='vrs'):

 print('reaction node at R'+str(i[0])+"X in N "+str(reactionmat[(i[0]-1)*2]))

 file.write('reaction node at R'+str(i[0])+"X in N "+str(reactionmat[(i[0]-1)*2])+

'\n')

#modal analysis

#(globalstiffnessmatrix-(lambda)globalmassmatrix)X

class Eigen(object):

 def _init_(self, *args, **kwargs):

 return super()._init_(*args, **kwargs)

 def Rescale(self, x):

 max = x.max()

 min = x.min()

 s = x.shape

 n = s[0]

 amax = max

 if abs(min) > max: amax = abs(min)

 for i in range(n):

 x[i] = x[i] / max

 return x

 def RescaleEigenVectors(self, evec):

 dims = evec.shape

 ndofs = dims[0]

 for i in range(ndofs):

 evec[:,i] = self.Rescale(evec[:,i])

 return evec

69

 def GetOrthogonalVector(self, ndofs, trial, mg, ev,evec):

 const = 0

 s = [ndofs]

 sumcu= np.zeros(s)

 for e in range(ev):

 U = evec[:,e]

 const += trial @ mg @ U

 cu = [x * const for x in U]

 sumcu += cu

 trial = trial - sumcu

 return trial

 def Solve(self,kg, mg, tolerance = 0.00001):

 dims = kg.shape

 ndofs = dims[0]

 s = (ndofs,ndofs)

 evec = np.zeros(s)

 s = (ndofs)

 eval = np.zeros(ndofs)

 trial = np.ones(ndofs)

 eigenvalue0 = 0

 for ev in range(ndofs):

 print("Computing eigenvalue and eigen vector " + str(ev) + "... " , end="")

 converged = False

 uk_1 = trial

 k = 0

 while converged == False:

 k += 1

 if ev > 0:

 uk_1 = self.GetOrthogonalVector(ndofs,uk_1,mg,ev,evec)

 vk_1 = mg @ uk_1

 uhatk = np.linalg.solve(kg,vk_1)

 vhatk = mg @ uhatk

 uhatkt = np.transpose(uhatk)

 eigenvalue = (uhatkt @ vk_1)/(uhatkt @ vhatk)

 denominator = math.sqrt(uhatkt @ vhatk)

 uk = uhatk/denominator

 tol = abs((eigenvalue - eigenvalue0) / eigenvalue)

 if tol <= tolerance:

70

 converged = True

 evec[:,ev] = uk

 eval[ev] = eigenvalue

 print("Eigenvalue = " + str(eigenvalue))

 print('no of iterations= ',k)

 else:

 eigenvalue0 = eigenvalue

 uk_1 = uk

 if k > 1000:

 evec[:,ev] = uk

 eval[ev] = eigenvalue

 print ("could not converge. Tolerance = " + str(tol))

 break

 self.eigenvalues = eval

 return evec

rednpglobstifmat.shape

rednpglobmassmat.shape

compute eigenvalues and eigen vectors

e = Eigen()

evec = e.Solve(rednpglobstifmat,rednpglobmassmat)

evect = e.RescaleEigenVectors(evec)

eval = e.eigenvalues

neval = len(eval)

print("eigen values")

eigvalues=e.eigenvalues

print(e.eigenvalues)

file.write("eigen values are "+str(eigvalues)+'\n')

print(len(e.eigenvalues))

print("eigen vectors")

print(len(evect))

print(evect)

for i in evect:

 file.write("eigen vectors are "+str(list(i))+'\n')

from scipy.linalg import eigvalsh

ab=eigvalsh(rednpglobstifmat,rednpglobmassmat)

print(ab[0])

f1=np.sqrt(ab[0])

71

f1

f2=np.sqrt(ab[0])

f2=f2/(2*3.14)

f2

#frequency

freq=[]

for i in eigvalues:

 freq.append(math.sqrt(i)/(2*3.14))

print("natural frequency in hertz",freq)

file.write("natural frequency in hertz "+str(freq)+ '\n')

import matplotlib.pyplot as plt

z=1

for i in evect:

 time = np.array(i)

 amplitude = np.sin(time)

 plot.plot(time, amplitude)

 plot.title('mode'+str(z))

 plot.xlabel('vector')

 plot.ylabel('sin(vector)')

 plot.grid(True, which='both')

 plot.axhline(y=0, color='k')

 plot.savefig(r"D:\Remo desktop\PhD work\Python Project

2021\mode"+str(z)+'.png', bbox_inches='tight')

 plot.show()

 plot.show()

 z+=1

file.close()

4.5 How the python prints the results

Now run the code and give the input data. Python gives all static and

dynamic results with in a few milli seconds and print the results.

the total number of nodes= 19

the total number of elements= 35

coordinates for node1in mm : [0, 0]

coordinates for node2in mm : [1800, 3118]

coordinates for node3in mm : [3600, 0]

coordinates for node4in mm : [5400, 3118]

72

coordinates for node5in mm : [7200, 0]

coordinates for node6in mm : [9000, 3118]

coordinates for node7in mm : [10800, 0]

coordinates for node8in mm : [12600, 3118]

coordinates for node9in mm : [14400, 0]

coordinates for node10in mm : [16200, 3118]

coordinates for node11in mm : [18000, 0]

coordinates for node12in mm : [19800, 3118]

coordinates for node13in mm : [21600, 0]

coordinates for node14in mm : [23400, 3118]

coordinates for node15in mm : [25200, 0]

coordinates for node16in mm : [27000, 3118]

coordinates for node17in mm : [28800, 0]

coordinates for node18in mm : [30600, 3118]

coordinates for node19in mm : [32400, 0]

area in mm-square= 3250.0

modulus of elasticity in N/mm-square= 200000.0

the start node and end node for element 1 :[1, 3]

the start node and end node for element 2 :[3, 5]

the start node and end node for element 3 :[5, 7]

the start node and end node for element 4 :[7, 9]

the start node and end node for element 5 :[9, 11]

the start node and end node for element 6 :[11, 13]

the start node and end node for element 7 :[13, 15]

the start node and end node for element 8 :[15, 17]

the start node and end node for element 9 :[17, 19]

the start node and end node for element 10 :[2, 4]

the start node and end node for element 11 :[4, 6]

the start node and end node for element 12 :[6, 8]

the start node and end node for element 13 :[8, 10]

the start node and end node for element 14 :[10, 12]

73

the start node and end node for element 15 :[12, 14]

the start node and end node for element 16 :[14, 16]

the start node and end node for element 17 :[16, 18]

the start node and end node for element 18 :[1, 2]

the start node and end node for element 19 :[2, 3]

the start node and end node for element 20 :[3, 4]

the start node and end node for element 21 :[4, 5]

the start node and end node for element 22 :[5, 6]

the start node and end node for element 23 :[6, 7]

the start node and end node for element 24 :[7, 8]

the start node and end node for element 25 :[8, 9]

the start node and end node for element 26 :[9, 10]

the start node and end node for element 27 :[10, 11]

the start node and end node for element 28 :[11, 12]

the start node and end node for element 29 :[12, 13]

the start node and end node for element 30 :[13, 14]

the start node and end node for element 31 :[14, 15]

the start node and end node for element 32 :[15, 16]

the start node and end node for element 33 :[16, 17]

the start node and end node for element 34 :[17, 18]

the start node and end node for element 35 :[18, 19]

the total number of nodes having supports 2

the node number having support is 1 type of support is h

the node number having support is 19 type of support is hrs

total number of loaded nodes 10

the node number having load is 1 horizontal and vertical loads in N is [0.0, -

280000.0]

the node number having load is 3 horizontal and vertical loads in N is [0.0, -

210000.0]

the node number having load is 5 horizontal and vertical loads in N is [0.0, -

210000.0]

74

the node number having load is 7 horizontal and vertical loads in N is [0.0, -

210000.0]

the node number having load is 9 horizontal and vertical loads in N is [0.0, -

210000.0]

the node number having load is 11 horizontal and vertical loads in N is [0.0,

-210000.0]

the node number having load is 13 horizontal and vertical loads in N is [0.0,

-210000.0]

the node number having load is 15 horizontal and vertical loads in N is [0.0,

-210000.0]

the node number having load is 17 horizontal and vertical loads in N is [0.0,

-210000.0]

the node number having load is 19 horizontal and vertical loads in N is [0.0,

-360000.0]

density in gm/mm-cube is 0.00785

poissions ratio is 0.3

nodal displacements in mm are [0, 0, 80.57235900725235, -

52.71710028209583, 2.6857453002416967, -103.88373823563647,

75.20086840676883, -150.39864392570678, 10.07154487590647, -

192.6497782122503, 65.80075985592269, -227.92348674249067,

20.814526076873438, -256.9953459585102, 53.71490600483477, -

277.5393170896713, 33.57181625302168, -290.7185921601952,

40.28617950362602, -294.5947479815832, 47.0005427542304, -

290.71859216019516, 26.857453002417287, -277.5393170896711,

59.75783293037865, -256.9953459585099, 14.77159915132945, -

227.9234867424904, 70.50081413134559, -192.64977821225014,

5.371490600483331, -150.39864392570675, 77.88661370701043, -

103.88373823563649, -2.0155159541979338e-13, -52.71710028209584,

80.57235900725217, 0]

element 1 stress in N/mm-square= 149.2080722356498

element 2 stress in N/mm-square= 410.32219864804296

75

element 3 stress in N/mm-square= 596.8322889426094

element 4 stress in N/mm-square= 708.7383431193468

element 5 stress in N/mm-square= 746.0403611782623

element 6 stress in N/mm-square= 708.738343119347

element 7 stress in N/mm-square= 596.8322889426081

element 8 stress in N/mm-square= 410.3221986480463

element 9 stress in N/mm-square= 149.2080722356527

element 10 stress in N/mm-square= -298.4161444713062

element 11 stress in N/mm-square= -522.2282528247856

element 12 stress in N/mm-square= -671.4363250604399

element 13 stress in N/mm-square= -746.0403611782639

element 14 stress in N/mm-square= -746.0403611782631

element 15 stress in N/mm-square= -671.4363250604354

element 16 stress in N/mm-square= -522.2282528247845

element 17 stress in N/mm-square= -298.4161444713074

element 18 stress in N/mm-square= -298.43829460071817

element 19 stress in N/mm-square= 298.43829460071817

element 20 stress in N/mm-square= -223.82872095053725

element 21 stress in N/mm-square= 223.8287209505396

element 22 stress in N/mm-square= -149.21914730035712

element 23 stress in N/mm-square= 149.21914730035869

element 24 stress in N/mm-square= -74.60957365017461

element 25 stress in N/mm-square= 74.60957365018092

element 26 stress in N/mm-square= 0.0

element 27 stress in N/mm-square= -3.157733329710917e-12

element 28 stress in N/mm-square= 74.6095736501825

element 29 stress in N/mm-square= -74.60957365018092

element 30 stress in N/mm-square= 149.21914730035869

element 31 stress in N/mm-square= -149.21914730035553

element 32 stress in N/mm-square= 223.8287209505349

element 33 stress in N/mm-square= -223.82872095053645

76

element 34 stress in N/mm-square= 298.43829460071856

element 35 stress in N/mm-square= -298.43829460071817

reaction node at R1X in N 1.1816155165433884e-08

reaction node at R1Y in N 1119999.9999999981

reaction node at R19Y in N 1199999.9999999972

eigen values are [0.00234043 0.02084768 0.03527261 0.11245795

0.22372369 0.19907059

 0.11219565 0.02924594 0.00643356 0.00449632 0.02088284 0.02231559

 0.00370794 0.00785575 0.00288586 0.00249354 0.00266894 0.00245855

 0.00255837 0.00243372 0.00249551 0.00241577 0.00245658 0.0024025

 0.00243084 0.00244897 0.00241239 0.00242439 0.00239916 0.00240752

 0.00238934 0.00239541 0.00238184 0.00238639 0.00238352]

eigen vectors are [-0.27799045565014263, 0.4802719325422103, -

0.1296690082758511, -0.3867645404348355, 0.8798180497251236,

0.6830058652995395, 0.20043660942161073, 0.6230894275101142, 1.0,

1.0, -1.078998781421197, 0.532752541553521, -0.14664847887313584,

0.0032723966875199853, -0.1945351825034667, 1.0, -

0.2137952511157689, 1.0, -0.22561650756410556, 1.0, -

0.2337438760568063, 1.0, -0.23964958084113616, 1.0, 1.0, -

0.24091511313716987, 1.0, -0.24534667690296313, 1.0, -

0.24878409829719475, 1.0, -0.25153297519894685, 1.0, 1.0, -

0.2545465577557507]

eigen vectors are [0.17803559634423766, -0.28167753351026253,

0.2332450632018002, 0.4843885758649944, -0.409921973289099, -

0.2760920684694611, -0.38255900269679116, -0.2861343173731408, -

1.2985268233637735, -0.8113276791527179, 0.5636096207662951, -

0.2711156023029782, 0.10987895006449384, 0.029080008480762407,

0.13355954812524237, -0.6603540632499568, 0.14378690910305547, -

0.6573397285394004, 0.1500159214703888, -0.6550675577299753,

0.15431504851525035, -0.6533148286556708, 0.15744787773038738, -

0.651930132988549, -0.6546924097072699, 0.15811195365036507, -

77

0.6529212468230842, 0.1604761754956811, -0.6515472581347203,

0.16231196257269095, -0.6504506614023005, 0.16378135615474912, -

0.6495552102459853, -0.6501023229189612, 0.16539404256567505]

eigen vectors are [-0.013771764084600773, 0.24060768642796307,

0.16436294401525556, -0.07268596292187587, 0.6698467898473073,

0.5152851775163946, -0.103017996765653, 0.48257507959915946, -

2.7433245449641577, -0.6282460448928144, -0.5724693723912044,

0.31286643080630683, 0.05713077201012279, 0.13309821355939833,

0.030119975060005893, -0.04035066729716144, 0.020221191868914568, -

0.027409518632921123, 0.013840019693586907, -0.01749427528626151,

0.009478703066800327, -0.009762387994732067, 0.006323834129690061,

-0.0036057088314930185, -0.016137683949349148,

0.005637018343970947, -0.00815942089388527, 0.003290285818646873, -

0.0019507382114112744, 0.0014731434703147176,

0.003017918540506312, 2.213021330447775e-05, 0.007084881421493825,

0.0045890034332496665, -0.0015657762068523463]

eigen vectors are [0.3476121584008677, -0.4182225632911257,

0.5505365870188006, 0.8661042073979331, -0.3574014655196348, -

0.20298368523507754, -0.7943879411712989, -0.2704583845168411, -

4.250846674882634, -1.9950393737743686, 0.7815887551146279, -

0.3535014465627632, 0.25390022692009734, 0.13843438220449908,

0.28507321196405383, -1.3442036965946194, 0.2995596012684204, -

1.3303997591533705, 0.30817427872773756, -1.3199014689213358,

0.31414721099668685, -1.3117548245682435, 0.3185144976393441, -

1.3052907553978885, -1.3183330502622255, 0.3194291580528421, -

1.3100039031042459, 0.32274624093715265, -1.303531351827773,

0.3253251268067214, -1.298357820474594, 0.32739149536331363, -

1.2941276800194343, -1.2967187203643908, 0.3296622653351482]

eigen vectors are [-0.26262500787935433, 0.4727902859587274,

0.004607480286885616, -0.1625999134543082, 0.8684773657942036,

0.7012059976379708, -0.0017725524403347814, 0.654786192229127,

78

0.4827230010487541, 0.8185984666506072, -1.108730594140894,

0.552635613633201, -0.12712573440013453, 0.02498268205429096, -

0.177343821211837, 0.9303490495997366, -0.19703309166628066,

0.9325010093254804, -0.20915771136105948, 0.9341293825806498, -

0.2174842502343619, 0.9353887145285708, -0.2235295261288009,

0.9363854634886403, 0.9343899408040662, -0.22482958560765176,

0.9356676767006012, -0.22935772372356428, 0.9366597751457728, -

0.23286893547573417, 0.9374521730862039, -0.23567604394327035,

0.9380996379408488, 0.9377037157851825, -0.2387523898743091]

eigen vectors are [0.507229724293509, -0.5394354336478332,

0.7648765893731594, 1.0, -0.21619773474470722, -0.09588614392004527,

-1.0111593847976283, -0.24855778770210404, -6.9736666497470186, -

3.079341858333644, 1.0, -0.4384766964245419, 0.38737167517391435,

0.23878164916378355, 0.4268916970767629, -1.9861680241132509,

0.44558835318440243, -1.9625046059405797, 0.4565745541858721, -

1.9444786643403502, 0.4642067612072528, -1.9304755210520497,

0.4697952435032035, -1.9193558441537113, -1.9418408139233525,

0.4709605712929126, -1.9274921423121385, 0.4752158106827349, -

1.9163386746243862, 0.4785258207921383, -1.907421462165865,

0.48117918212763316, -1.900128684149449, -1.9045977557492,

0.48409649834945667]

eigen vectors are [-0.04169441392933607, 0.4689600426071694,

0.20778581285015485, -0.25448312242279436, 1.0, 0.7343067079545679,

-0.001965655546096626, 0.820321651855307, -4.602298384687668, -

1.009970878946891, -1.0398716724016497, 0.5652625089126818,

0.0874364870039814, 0.22683631138338717, 0.039244241403805974, -

0.005296311148581218, 0.021096706478196246, 0.016856919467131977,

0.009398490412439354, 0.033882479828690484,

0.0013834367451650603, 0.04718565873252263, -0.004424811343662149,

0.05779386326935623, 0.036129217406917484, -0.00568187541188562,

0.04990513527537437, -0.010016918730667292, 0.060632039999055774, -

79

0.013375971288585215, 0.06922092084537836, -0.016059782624916558,

0.07625425342509927, 0.07193480656902497, -0.01899883648013852]

eigen vectors are [0.6491392165473799, -0.5146951018413798,

0.9688773183414469, 0.8920056002342169, 0.16043890372803812,

0.1466725237278416, -1.0630655305923462, -0.01727310379604383, -

10.810330039322078, -4.382213729528509, 0.935673494984739, -

0.37096077357573515, 0.5381610612288938, 0.3955303145153926,

0.573601945196995, -2.6039369914890496, 0.591494630882576, -

2.5648856337903965, 0.6016172778457921, -2.5350553937593583,

0.6086834036509693, -2.5118399736857335, 0.6138757504343789, -

2.4933806487352195, -2.530830323183909, 0.6149455084096932, -

2.5069599218410983, 0.6189247615226668, -2.4883952527179085,

0.6220240853709786, -2.473546057367803, 0.624511252913146, -

2.4613970897413067, -2.468847422622586, 0.6272493525835072]

eigen vectors are [-0.2336012465393183, 0.4729056312084427,

0.22776577540096643, 0.0915535615854031, 0.9010469195371557,

0.7418986660676631, -0.25493728934318605, 0.7318073651511968, -

0.5742675637477538, 0.4653599466535145, -1.1776181427125045,

0.597233161349146, -0.08889051013220096, 0.06986733704740146, -

0.14365895236179438, 0.7959510001148336, -0.16440713495964665,

0.8025305519554817, -0.1772717339294577, 0.8075242318727278, -

0.1860913191813184, 0.8113938943548938, -0.19248622942761673,

0.8144611345798004, 0.8082952930674724, -0.19386863564283652,

0.8122377533185628, -0.19864575425415945, 0.8153004798207454, -

0.20234819202433815, 0.8177478240170285, -0.20530690825383008,

0.8197483541027348, 0.8185239601199614, -0.20854766600470556]

eigen vectors are [0.7722589830935865, -0.47622872832708574, 1.0,

0.5156132389243878, 0.47133525520322206, 0.3009753079090322, -

0.8464653644809262, 0.15644872482352792, -13.989315609958298, -

5.461628382945342, 0.9134460472452036, -0.3306979413589713,

0.6645788922854671, 0.5245633510209592, 0.6991590617381712, -

80

3.1363970621337263, 0.7168383748709609, -3.0846609956746285,

0.7265003819544928, -3.045059067997189, 0.7332612570395747, -

3.014196648539377, 0.7382382912117296, -2.989632725673801, -

3.039591719894652, 0.7392584205504051, -3.0077758838975672,

0.7430841780833515, -2.98302220428749, 0.746065926858136, -

2.9632160350387724, 0.7484600529806898, -2.9470067267615905, -

2.9569524345970413, 0.7510973619245623]

eigen vectors are [-0.08099426285584785, 0.6581071612975151,

0.18846687490220593, -0.3123405081745887, 0.8756386751759025,

0.6085347952938813, 0.13258736788877998, 0.9741505847577681, -

5.449775508889345, -1.1359081150799768, -1.3688321539468242,

0.739439915951773, 0.08994510810500624, 0.27456183476648144,

0.027304828624015155, 0.0998346747013552, 0.0031741160437175923,

0.12685788469743337, -0.012378060453272558, 0.14770506488492843, -

0.023063089170329846, 0.164034531748442, -0.0308214824306311,

0.17707891626953381, 0.1503364551814622, -0.032490542803710394,

0.1673172429516685, -0.03830185396890458, 0.18054976899515945, -

0.04280822472463939, 0.19115166818024995, -0.04641101530624279,

0.19983825028951743, 0.19449898442748903, -0.05035939750761931]

eigen vectors are [0.870271143622845, -0.31601012114335053,

0.9741940546854702, 0.034860706299077074, 0.5861307418591146,

0.26518666759523435, -0.44795310417379036, 0.38456680659966336, -

17.54632399845788, -6.5833511958204065, 0.7139858857075008, -

0.19701961583476138, 0.7886932592039336, 0.6763826736761646,

0.8151106182226693, -3.5974886989877204, 0.8292617873752459, -

3.5306571043010266, 0.8363121588388768, -3.4793540243817027,

0.8412668819028394, -3.439297917391368, 0.8449268283189596, -

3.4073737265493644, -3.4725082109535697, 0.8456684581208208, -

3.4310752073184263, 0.848498969035409, -3.3988211468437193,

0.8507077624171379, -3.37300148950496, 0.8524830952457871, -

3.3518620521609663, -3.3648417490594023, 0.8544411220799292]

81

eigen vectors are [-0.19446001531148918, 0.5033302111874072,

0.45999569849319566, 0.16039180673608652, 0.8936276571996518,

0.6903065610634841, -0.3424043875440735, 0.8285029822411419, -

2.068472178729247, -0.02057332709862773, -1.2778610702412652,

0.6618524590357254, -0.036416776161161894, 0.1338429133970738, -

0.09673449338058757, 0.6108830428923316, -0.11914327016406781,

0.6238168112012068, -0.1331852754280413, 0.633685488966157, -

0.1428049501067117, 0.6413597669493518, -0.14977573215400314,

0.647458170140929, 0.635119408615788, -0.15128659834869526,

0.6429908488031442, -0.15648696382878258, 0.6491119689901043, -

0.16051644643118768, 0.6540074114360647, -0.16373582260308747,

0.6580121231921753, 0.6555576434973791, -0.16726113095934209]

eigen vectors are [0.9429590274369207, -0.16485955410360875,

0.7702326172612566, -0.4903682520402279, 0.5517951273383631,

0.13501902968671475, 0.05949899217083694, 0.5131322974149841, -

20.085369540941844, -7.386151381070984, 0.5913146847735459, -

0.11127777228648109, 0.8777828930235444, 0.7844356863098476,

0.9004387922650894, -3.938580745005686, 0.9122719967320299, -

3.860913441306575, 0.9175382620315556, -3.8011483906348786,

0.9212398794285842, -3.754411762767971, 0.9239759929203469, -

3.7171210962389343, -3.7934090138016083, 0.9245299886771444, -

3.744927762929283, 0.9266477607704576, -3.7071693232991416,

0.928300801206269, -3.676931384562472, 0.9296297186095555, -

3.6521659943649447, -3.667380909547732, 0.9310956935573679]

eigen vectors are [-0.1274500671406974, 0.7841684551166858,

0.18318599453599105, -0.1287660020154853, 0.5102099800670818,

0.3390010251287388, 0.12486291637172642, 1.0, -5.451688938162227, -

1.0518200146154064, -1.5761769531020164, 0.8449271077412134,

0.07053231821433055, 0.28325334472893393, -0.0013669080049726725,

0.2573243365325906, -0.02936767796216382, 0.2854429415942624, -

0.04738099676527955, 0.3072054104915948, -0.05978281695454559,

82

0.3242875251705431, -0.06880113928100975, 0.3379534858901755,

0.3098515482394296, -0.07073325523465217, 0.3276752670318601, -

0.07750565666981524, 0.3415739550267142, -0.0827603037673432,

0.3527158145810833, -0.08696333130244442, 0.36184918929632404,

0.35623153774232025, -0.09157204290415953]

eigen vectors are [0.9858724540034506, 0.06327881873556133,

0.5280371436395312, -0.843436450081474, 0.16684124606291267, -

0.244553783806678, 0.5576215876549268, 0.6171322148778494, -

22.469186352328723, -8.102982004881403, 0.3658514095251342,

0.025699216233159985, 0.9509678335154694, 0.8906280701861925,

0.9654160186193487, -4.1744513131776175, 0.9729357437764249, -

4.085920577839474, 0.9751429051096129, -4.017608798555461,

0.9766925817372993, -3.964092994728274, 0.9778404130533375, -

3.9213386382433915, -4.009057561860898, 0.9780710033565075, -

3.9533703965982476, 0.9789628941632428, -3.909976349502751,

0.9796596077300048, -3.875209372100083, 0.9802200817964974, -

3.8467233255028255, -3.864235123931945, 0.9808388477639745]

eigen vectors are [-0.14995109536348109, 0.577558829267646,

0.6214274383804375, 0.030086167559868073, 0.614013535604104,

0.3601812214645606, -0.16779248583180115, 0.8763247921496278, -

3.7361530743258275, -0.5716740090658194, -1.3780865913705693,

0.7287506712215652, 0.02215367918366367, 0.2053241600369, -

0.04271445950715352, 0.39809497999724763, -0.06696255803801024,

0.41829224402105786, -0.08236782589207285, 0.43381079808908823, -

0.09293822937093464, 0.4459338558219488, -0.10060608308861406,

0.4555991688529143, 0.4358895275055424, -0.1022631185514102,

0.44842790277152283, -0.10799407063702993, 0.4581913194455559, -

0.11243641721043447, 0.4660086748115482, -0.11598681106477737,

0.4724100437424387, 0.46847994364437956, -0.11987605806548378]

eigen vectors are [1.0, 0.24682933446266533, 0.1688554476818977, -

1.0061524658492047, -0.10206909639150386, -0.4332836227216297,

83

0.8801445921824158, 0.6786793677809857, -23.774725429239542, -

8.470530687065903, 0.20508869025629958, 0.1196231661214277,

0.9865509281752511, 0.950584697175644, 0.99560330076101, -

4.273127081010934, 0.9999851241998766, -4.178393024722619, 1.0, -

4.105153819325627, 1.0, -4.047705847119084, 1.0, -4.001768791458481, -

4.0962109002101315, 1.0, -4.036300133497959, 1.0, -3.989597124024109,

1.0, -3.9521669886812782, 1.0, -3.9214903337663203, -

3.9403572384968832, 1.0]

eigen vectors are [-0.17590819351909362, 0.8381707226908744,

0.2505957309563954, 0.1753797792066275, 0.18001935576541195,

0.11726950514543093, -0.021670275214446068, 0.9734216300962102, -

4.883271470911847, -0.8213792482091452, -1.6921867811630082,

0.898919893651531, 0.03739402843018875, 0.265020488219093, -

0.04019464363403665, 0.4423964802090548, -0.07037051620919042,

0.4688842664617278, -0.08970389691925933, 0.4894200474093052, -

0.10302687536201208, 0.5055572295913918, -0.11272136720904675,

0.5184773884141946, 0.4918738958578656, -0.11479544342144982,

0.5087382585104041, -0.12208298665763481, 0.5218939501271284, -

0.1277387577520697, 0.5324435522402993, -0.13226356511414994,

0.5410937614775424, 0.5357716922847133, -0.13722623465930905]

eigen vectors are [0.9830178383631668, 0.4546796969638217, -

0.15927303504313184, -0.856638951466471, -0.531483469409781, -

0.6814390005554869, 1.0, 0.7297578182305416, -24.67148659651854, -

8.67929746771332, -0.023922095221403164, 0.24452256774338432, 1.0,

0.9966741792174799, 1.0, -4.2508619420864076, 1.0, -

4.151213844138212, 0.9970860455393531, -4.074037301912874,

0.9950259258775088, -4.013430297156583, 0.9935051831363565, -

3.9649267552614096, -4.064827009983164, 0.9931948025204531, -

4.001496211296679, 0.9920214910694457, -3.952109214702161,

0.9911059862198731, -3.9125158793771657, 0.9903702337729073, -

3.8800577420823616, -3.9000282771791603, 0.9895589861810473]

84

eigen vectors are [-0.10545680866683885, 0.6913092640011199,

0.6679389924126434, -0.10593321255024372, 0.042125691697348915, -

0.19752143258949117, 0.12744507702138225, 0.8638860915394281, -

5.4010538485651365, -1.136183104440396, -1.4715629536296004,

0.7929112149825562, 0.08071025381224955, 0.2768264024247328,

0.012335949937011328, 0.18219755203827562, -0.013801280912459787,

0.20983970414250527, -0.03065499728946047, 0.23121751655444042, -

0.04225718613208197, 0.2479887475974026, -0.050692619010115826,

0.26140046712456083, 0.2338591252134628, -0.05250308958636611,

0.25133557480254876, -0.05883347460560478, 0.26496131254701516, -

0.0637446782572373, 0.27588277770308717, -0.06767261215971793,

0.2848342819514197, 0.27933017684634803, -0.07197905214435134]

eigen vectors are [0.9372668859353239, 0.5845448836882491, -

0.506934497128297, -0.5114984722421537, -0.49818920719860027, -

0.458799430982391, 0.8131096212022175, 0.817743777331656, -

24.56633285800569, -8.540292070387109, -0.20871050258096918,

0.3365851523559103, 0.977463585133239, 1.0, 0.9695558559036541, -

4.090477145316475, 0.9661716203189107, -3.9904337506979095,

0.9611359416114603, -3.91290404240705, 0.9576011270449442, -

3.8519951082849446, 0.9550003397962732, -3.803235598358337, -

3.903727825624804, 0.954464103990057, -3.840037210736585,

0.9524686996414643, -3.7903628647246252, 0.9509134419476314, -

3.7505345662958876, 0.9496646791186678, -3.7178805363569336, -

3.737974522933653, 0.94828922637932]

eigen vectors are [-0.2209034921734199, 0.8308447022200377,

0.40195299522734396, 0.3570859808364809, -0.10056461199446935, -

0.11816628063444032, -0.11650387974808933, 0.9027966796326077, -

3.9169231241908653, -0.49329051794834444, -1.7212108822533758,

0.9052080357220876, -0.003589696806587998, 0.2271833259408199, -

0.08300444602924532, 0.629926506682418, -0.11377100573022324,

0.6527769949564759, -0.1333787611672275, 0.670513273469655, -

85

0.14689608758678072, 0.6844606587598684, -0.1567346493284072,

0.6956331373198521, 0.6726152343173741, -0.15883898587129064,

0.6872028412284498, -0.16623724661830008, 0.6985855017661424, -

0.1719795001096038, 0.7077152575920277, -0.17657384222052674,

0.7152025731171766, 0.7105953697040847, -0.18161314833165348]

eigen vectors are [0.8626016459745839, 0.6942086323017892, -

0.7444708430630268, 0.007990423597836324, -0.4952759792220744, -

0.24212384259727626, 0.4696150246199912, 0.8908228311122439, -

23.837270582833302, -8.182854122306983, -0.4145226467153322,

0.4334910491250113, 0.9284993328696594, 0.9787829909525486,

0.9110551725572793, -3.8079863573278665, 0.9039463062600183, -

3.7099921405086858, 0.8966623569322232, -3.6340224345600327,

0.8915723722818546, -3.5743241603412703, 0.8878364535556431, -

3.5265250315213503, -3.6250723002350047, 0.8870594418728518, -

3.5626232021465447, 0.8842060605698147, -3.5139124690271886,

0.8819839663604627, -3.474853624024154, 0.8802010580837899, -

3.442828217221262, -3.4625370087880936, 0.8782389566472245]

eigen vectors are [-0.0663448903224016, 0.8219685286140248,

0.6102342048443596, -0.050558850077669915, -0.5227804724834907, -

0.6649181949220836, 0.29173061040356585, 0.8603487932512462, -

7.025995516969587, -1.6801691015182048, -1.582195165230026,

0.8653044843731785, 0.13614031419276448, 0.347352665028695,

0.06340270417351525, -0.013932482252544419, 0.03506838442396685,

0.02107338078529797, 0.016575610025744033, 0.04825286644242376,

0.003808543326140772, 0.06963003095997251, -0.005492321218696554,

0.08675618409509929, 0.051441618223281214, -0.007476590407987334,

0.07381709737818247, -0.014481303964526824, 0.0912757819205563, -

0.01991979529406437, 0.10527854073441575, -0.02427222131378559,

0.11676199808828883, 0.10969470317813337, -0.029047603672036525]

eigen vectors are [0.7626522270863698, 0.7096458904259071, -

0.9149609877342385, 0.49486178409735704, -0.043596721950612025,

86

0.34308123215568576, -0.014849218555007352, 0.9846659675939458, -

22.069325308715147, -7.472611259978803, -0.5526782420581802,

0.48545561754080063, 0.843950023402035, 0.9124827524380306,

0.8194111399917421, -3.398189544428958, 0.8099768967491986, -

3.307004637629978, 0.8015050673834416, -3.2363645111083357,

0.795619748417052, -3.1808791255163116, 0.7913163173932379, -

3.1364669037240422, -3.2279666870775814, 0.7904104560468146, -

3.169969392030889, 0.787145559990731, -3.1247362385607134,

0.7846063890843282, -3.088469349825265, 0.7825713442748038, -

3.0587355764572837, -3.0770314114529675, 0.7803346926990992]

eigen vectors are [-0.25731369808935456, 0.7891396115639155,

0.5954122225719293, 0.29043586424896056, -0.47863269158690025, -

0.5223190573228217, -0.001775142725100294, 0.7647604120305623, -

2.7147953013382526, -0.12491305264694891, -1.665357480481418,

0.8667329294475415, -0.04661429989810314, 0.176661645137044, -

0.1234979951915225, 0.7948458291644638, -0.15340822849928437,

0.8128302363069317, -0.17237952117071031, 0.8268363125413764, -

0.1854700603223333, 0.8378733683658033, -0.19500402761581362,

0.8467272978814554, 0.8284409478176615, -0.19704008868307948,

0.8400189238620558, -0.20421656829680937, 0.8490590720098982, -

0.209787900585571, 0.8563138160607626, -0.21424628382695515,

0.8622660902649676, 0.858601498853419, -0.21913743750971176]

eigen vectors are [0.6392919605047511, 0.6816899146396852, -

0.9325617583148019, 0.8757077429967813, 0.20435633389849256,

0.6771501802647297, -0.3961598395349214, 0.9843581988144812, -

19.418870804200225, -6.493935618616271, -0.6354003880818665,

0.5017209052230468, 0.729080818693751, 0.8084772982208215,

0.6999597258625563, -2.878192251124834, 0.6891143215752527, -

2.797494822083796, 0.6801093944861674, -2.7350162053744707,

0.6738751975490538, -2.6859595374945355, 0.6693267441837515, -

2.6467031222999142, -2.7275304615481493, 0.668362148572447, -

87

2.676287081635206, 0.6649254500412739, -2.6363250241561795,

0.6622548140726133, -2.604286807989606, 0.6601158554726806, -

2.578021683158761, -2.594181126172651, 0.6577668912958787]

eigen vectors are [-0.03732613008727977, 0.9358175213920019,

0.5057297386293966, 0.190178959438176, -0.7970211894749782, -

0.809587793094245, 0.22842020871664953, 0.9166219202056586, -

8.47385556571541, -2.1414605130773623, -1.7112234732595828,

0.9445898010678249, 0.1829960080776227, 0.4111033979480739,

0.10448429297018957, -0.16651174857542378, 0.0737620127738326, -

0.12496709554276433, 0.053574333462694, -0.09267564678344992,

0.039620950693557096, -0.0672596091171003, 0.02944765112240393, -

0.0468871637478318, -0.08894559271981187, 0.027282355039568846, -

0.06230883210093679, 0.01960969704694733, -0.04152046953712978,

0.013650692732934584, -0.024843880395711306, 0.008880415402926398,

-0.01116532552147943, -0.01958577686677536, 0.0036449508132047575]

eigen vectors are [0.49717443022479657, 0.5695497930570333, -

0.8476605563360332, 0.9985838615687918, 0.555009387763469, 1.0, -

0.642646973546415, 0.9158541693663548, -15.694387660106871, -

5.184069284435926, -0.6081792671378393, 0.45224915239768265,

0.5806714632523593, 0.6567406817857699, 0.5521018425155892, -

2.255449840859211, 0.5418226087988485, -2.1900849304210794,

0.5336558024761419, -2.139538741083307, 0.528025638523001, -

2.0998817865357453, 0.52392955417595, -2.068164494886374, -

2.1333896008176128, 0.5230531445877524, -2.092019909819157,

0.519974044610757, -2.0597648092657073, 0.5175837948409516, -

2.033910080828492, 0.5156710776171166, -2.012717537799196, -

2.0257527455456783, 0.5135727252001209]

eigen vectors are [-0.2809708105733507, 0.7461564940952752,

0.7573497995246958, 0.08817354627904381, -0.9090326441505543, -

1.0031619925899709, 0.24200748896300373, 0.6033138345307255, -

1.6475096724380458, 0.18033814549699917, -1.5735313897823677,

88

0.8115057295698472, -0.08124712660640625, 0.13031881833835302, -

0.1535222009320517, 0.9101601486329483, -0.1819833277654065,

0.9237241708655033, -0.1999798708627855, 0.934364985489786, -

0.21241696336710583, 0.9427882435252183, -0.22148471141860399,

0.9495665716812222, 0.9354829485892209, -0.22341534015049686,

0.9443802524930928, -0.2302533879397248, 0.9513366029234326, -

0.23556397116633387, 0.9569252372269573, -0.23981501042749345,

0.9615147940496639, 0.9586855860145922, -0.24448036174966606]

eigen vectors are [0.3398407200586651, 0.41711019627641693, -

0.6310835261682288, 0.8685363472105481, 0.5177106744605058,

0.8728672660907547, -0.6106948828549927, 0.6965329573945176, -

11.081128659380132, -3.6298127347752334, -0.48282296272358405,

0.3459341679253006, 0.4052256279599891, 0.4656391806588685,

0.3822537851019475, -1.5526123510500118, 0.37410765126255746, -

1.5063241801167724, 0.36780753295357854, -1.4705521424384587,

0.3634719646009427, -1.4424976075132636, 0.3603214789123158, -

1.4200660535070966, -1.4661654681680507, 0.35964473018408855, -

1.4369197901706248, 0.357281709437803, -1.414119947173929,

0.3554481540742728, -1.3958459037701578, 0.3539814637580838, -

1.380868238096028, -1.3900795110192112, 0.3523731465814684]

eigen vectors are [-0.021892076509316266, 1.0, 0.42715283455405273,

0.4066790074639688, -0.815020881961226, -0.7421496205958702,

0.09249711424821383, 0.9872004765010773, -9.367008697074638, -

2.4126336349696333, -1.8044500545476945, 1.0, 0.21075675792023685,

0.4507971422660544, 0.12779025163185917, -0.2507582794187477,

0.09542362204965904, -0.20522248017328631, 0.07410596211726742, -

0.1698370287645353, 0.05937140211700667, -0.14198951010691832,

0.04862846601124682, -0.11967004580776487, -0.1657401221188529,

0.046341824838218325, -0.13656102765394437, 0.03823951546064537, -

0.11378915527026558, 0.031946706328631995, -0.09552177698149748,

89

0.02690913664607076, -0.08053868493887521, -0.08976191098687084,

0.02138023115097929]

eigen vectors are [0.1725311904068664, 0.21631415434606466, -

0.34063137776943236, 0.4951636799784924, 0.3569001149130205,

0.5470687253186791, -0.37548566763920516, 0.3844708366425129, -

5.726194443605213, -1.8638741550248314, -0.26483759900236353,

0.1862755365372125, 0.20801509288560988, 0.2411345559758594,

0.19529768849300172, -0.7908977044198306, 0.19085443008166667, -

0.7669717056713958, 0.18746574948192649, -0.7484958418741231,

0.18513852080782134, -0.7340132188626849, 0.1834497968315468, -

0.7224374351441978, -0.7462084111042016, 0.18308548719733586, -

0.7311237642677174, 0.18182207004056308, -0.7193655131601153,

0.1808422545094237, -0.7099424314165719, 0.18005883066983644, -

0.7022199456916531, -0.7069684851001788, 0.1792002024882986]

eigen vectors are [-0.2891576758597114, 0.7285863169669518,

0.8200063862766722, -0.01634406194298168, -1.1070465455964957, -

1.2244949171564008, 0.3661413139819448, 0.5299318810178555, -

1.2148930284577546, 0.30006207947242036, -1.5293462560769877,

0.7856652205367481, -0.09470080417885984, 0.11129670341190978, -

0.16470706103879698, 0.9517914233371336, -0.19247100476223764,

0.9635525654178776, -0.2100084777644408, 0.9728261575960667, -

0.22213840432099963, 0.9801902162173645, -0.2309873068876496,

0.9861289978648213, 0.9737378297942274, -0.23286816272838357,

0.9815539046827625, -0.2395478518685038, 0.987670415599645, -

0.2447365012378604, 0.9925879906434496, -0.24889063322997193,

0.9966289978922684, 0.9941357413827956, -0.2534505229283462]

natural frequency in hertz [0.007703503204665013,

0.022991600605499613, 0.029906056449980054, 0.05339928477376626,

0.07531757807865841, 0.07104669894212147, 0.05333697346367255,

0.027231599568402928, 0.012772210975147915, 0.010677490254064573,

0.023010982615878518, 0.023787264146577062, 0.009696317064634398,

90

0.014113478513246161, 0.008554170055072698, 0.007951486848923174,

0.008226394161470186, 0.007895503869950136, 0.008054194602876177,

0.007855526590241307, 0.007954627092713318, 0.007826517972431668,

0.00789233437775372, 0.00780498893290061, 0.007850875842142314,

0.00788011335206704, 0.007821031537877629, 0.00784046858362362,

0.007799552608904261, 0.007813139572461643, 0.007783574311242421,

0.0077934536174361566, 0.00777135850232812, 0.007778775096071561,

0.0077740987579034545].

CHAPTER – Ⅴ

RESULTS AND DISCUSSION

5.1 Results

This project carried out in ANSYS APDL Software and Python for validation

purpose for both static and vibration analysis for any truss structure.

91

 Fig 5.1 deformation of stress in model analaysis

5.1.1 Results comparison for validation between Ansys APDL and Python

Code:

Static analysis results of python code were compared with Ansys APDL

software. The below tables shows the comparision of nodal displacements ,

element stresses and reaction forces at the supports.

 Table 5.1 Nodal displacements validation:

node
Numbe

r
Nodal displacements in mm obtained

from Ansys APDL in MM

Nodal displacements in mm
obtained from Python Code in

MM

Qx Qy Qx Qy

1 0.000 0.000 0.000 0.000

2 80.572 -52.717 80.572 -52.717

3 2.686 -103.880 2.686

-
103.88

0

4 75.201 -150.400 75.201

-
150.40

0

5 10.072 -192.650 10.072

-
192.65

0

6 65.801 -227.920 65.801

-
227.92

0

7 20.815 -257.000 20.815
-

257.00

92

0

8 53.715 -277.540 53.715

-
277.54

0

9 33.572 -290.720 33.572

-
290.72

0

10 40.286 -294.590 40.286

-
294.59

0

11 47.001 -290.720 47.001

-
290.72

0

12 26.857 -277.540 26.857

-
277.54

0

13 59.758 -257.000 59.758

-
257.00

0

14 14.772 -227.920 14.772

-
227.92

0

15 70.501 -192.650 70.501

-
192.65

0

16 5.372 -150.400 5.372

-
150.40

0

17 77.887 -103.880 77.887

-
103.88

0

18 7.9378E-13 -52.717 7.9378E-13 -52.717

19 80.572 0.000 80.572 0.000

 Table 5.2 Element Stresses validation:

Element
Numbe
r

Element
stresses
from
Ansys
APDL in
N/mm2

Element
stresses
from
Python
code in
N/mm2

1 149.21 149.21

93

2 410.32 410.32

3 596.83 596.83

4 708.74 708.74

5 746.04 746.04

6 708.74 708.74

7 596.83 596.83

8 410.32 410.32

9 149.21 149.21

10 -298.42 -298.42

11 -522.23 -522.23

12 -671.44 -671.44

13 -746.04 -746.04

14 -746.04 -746.04

15 -671.44 -671.44

16 -522.23 -522.23

17 -298.42 -298.42

18 -298.44 -298.44

19 298.44 298.44

20 -223.83 -223.83

21 223.83 223.83

22 -149.22 -149.22

23 149.22 149.22

24 -74.61 -74.61

25 74.61 74.61

26 0 0

27 2.78E-12 2.78E-12

28 74.61 74.61

29 -74.61 -74.61

30 149.22 149.22

31 -149.22 -149.22

32 223.83 223.83

33 -223.83 -223.83

34 298.44 298.44

35 -298.44 -298.44

Table 5.3 Reactions forces validation:

Reaction
forces

Reaction
forces
from

Reaction
forces
from

94

Ansys
APDL in N

Python
Code in N

R1x
1.1816E-

08
1.1816E-

08

R1y 1119999.9 1119999.9

R19y 1199999.9 1199999.9

From the above comparison we found almost zero error between the results

obtained using python code and ANSYS software.

From this we can confirm that the python code which we developed is working

fully with almost zero error.

5.1.2 Modal Analysis using Python Code:

Before going to add modal results we are comparing natural frequencies

obtained from python and ansys software for cross checking.

 Table 5.4 Natural frequencies Validation:

S.No

Natural frequency
from Ansys APDl
In Hertz

Natural frequency
from Python Code
In Hertz

1 0.00770 0.00770

2 0.02298 0.02299

3 0.02989 0.02991

4 0.05337 0.05340

5 0.07528 0.07532

Just for validation we compared any of five natural frequencies from both

python and ansys software and we found that the results obtained are very close.

Already results obtained from ansys software were discussed in chapter 3. In this

chapter we will show the results obtained from python code.

5.2 Plotting Mode Shapes:

95

From the data of current project we obtained 35 mode shapes for the

corresponding natural frequencies. The following fig shows the model shapes of

truss structure.

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

 Fig 5.2 Figures of mode shapes

113

CHAPTER – Ⅵ

CONCLUSIONS AND FUTURE SCOPE

6.0 Conclusions

From the present investigation, it can be concluded that the results

obtained by running python code were almost matched with the results obtained

from ANSYS APDL software. The current project investigated static and

vibrational analysis of Railway Bridge structure using Python code and results

obtained are exceptional.

The python code which we developed is suitable for all truss structures

with any material. Our code is restricted to linear properties only.The code

which we developed is used for automation for conducting stress analysis and

vibration analysis .

If for different materials this same experiment has to run, then the entire

pre-processing process has to be changed and re-run the analysis. If in another

case the truss structure was different or number of elements used are differnet,

then the entire modeling work and then the pre & post works has to be carried

out newly while using ANSYS APDL Software. With this Python code, the

mentioned challenges can be solved very easily and at rocket speeds.

6.1 Future Scope

This Python code developed for any type of truss structure. In future it

can be upgraded to work for all structural members like beams plates columns

etc Also same procedure can be followed to develop python code that can work

for plates with notches. Also we can implement in composite materials also.

 CHAPTER Ⅶ

 REFERENCE

[1] An Object-Oriented class design for the Generalized Finite Element Method

programmingDorivalPiedadeNeto* ManoelDênis Costa FerreiraSergio

PersivalBaronciniProença, latin American journal of solids and structures,

10(2013) 1267 – 1291

[2] Alves Filho, J. S. R., Devloo, P. R. B. (1991). Object Oriented programming

in Scientific computations: the beginning of a new era. Engineering

Computations, Vol. 8, Issue 1, pp. 81-87.

[3] Bordas, S. P. A., Nguyens, P. V., Dunant, C., Guidoum, A., Nguens-Dand, H.

(2007). An extended finite element library, International Journal for Numerical

Methods in Engineering, Vol. 71, pp. 703-732

[4] Duarte, C. A. and Oden, J. T. (1996b).Hpclouds – an hpmeshless method.

Numerical Methods for Partial Differential Equations, Vol. 12, pp. 673–705.

[5] scikit-fem: A Python package for finite element assembly

Tom Gustafsson1 and G. D. McBainDOI: 10.21105/joss.02369

[6] Cimrman, R., Lukeš, V., & Rohan, E. (2019). Multiscale finite element

calculations in Python using SfePy. Advances in Computational Mathematics.

doi:10.1007/s10444-019 09666-0

[7] Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in

Science &

Engineering, 9(3), 90–95. doi:10.1109/MCSE.2007.55

[8] Bathe, K. J. (1996). Finite Element Procedures, Prentice-Hall, Inc. Englewood

Cliffs, New Jersey.http://matplotlib.sf.net/Matplotlib.pdf, (acessed April 2011).

	62da4b17ce0c8dcc422d1f783779756d949819685fb147ee0f4c386968672556.pdf
	89dc0e921dec2a3085be3fffc1fe806f4aa459ea3b1ff689e30b9e850fa87b99.pdf
	62da4b17ce0c8dcc422d1f783779756d949819685fb147ee0f4c386968672556.pdf

