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ABSTRACT

Python is a high-sophisticated, general- purposefulness, object-oriented, enhanced

programming language that includes several general features like clean, easy and simple

language, indicative language, dynamically typed, automatic memory management and

interpreted and very best tool when comparing with MATLAB because of various rich

libraries. In various fields of science, computational work and numerical calculations

forms a bridge between theory and experimentation which leads to developing

automation and simulation. Developing of automation or simulation has created several

benefits like quality, high production rate, efficient use of materials, increased safety

and decreases industry lead time. Therefore, the present work have been investigated to

develop Python code for automation in structural and Modal analysis of any beam

structure . In order to develop python code Continuous beam structures are to be

considered and the data was taken from introduction to finite elements by Chandrapatla.

Fully working python code was developed using jupyter notebook and python 3.9.10

and investigated deflections,slope,shear force,bending moment,element stresses,

support reactions, free natural frequencies and mode shapes. These results are compared

using ANSYS APDL R21. Therefore, using this developed python code, many

researchers can do automation for analysis of any beam at rocket speed.

Keywords— ANSYS APDL, MATLAB, Automation, Jupyter Notebook, Python,

Beams,Modal analysis.
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INTRODUCTION
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1.1 What is Structural Analysis?

A structure is a system of interconnected members used to support external loads.

Structural analysis is the prediction of the response of structures to specified arbitrary

external loads. During the preliminary structural design stage, a structure’s potential

external load is estimated, and the size of the structure’s interconnected members are

determined based on the estimated loads.

Structural analysis establishes the relationship between a structural member’s expected

external load and the structure’s corresponding developed internal stresses and

displacements that occur within the member when in service.

This is necessary to ensure that the structural members satisfy the safety and the

serviceability requirements of the local building code and specifications of the area where

the structure is located.

1.2 What is Modal Analysis?

Modal analysis is an indispensable tool in understanding the structural dynamics of objects

- how structures and objects vibrate and how resistant they are to applied forces. The

modal analysis allows machines and structures to be tested, optimized, and validated.

Natural resonance frequencies of the objects and damping parameters can be calculated,

and mode shapes can be visualized on an animated geometry of the measured objects.
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1.3 Introduction to python

The common myth is that Mechanical Engineering is not connected with any coding

type of platform. Generally, Mechanical Engineers tend to have an aversion to computer

programming and end up not understanding the opportunities that they miss out on. As

we move into a future that is tied up intrinsically with electric cars, autonomous

transportation, and automation, the next era of mechanical, aerospace & automotive

engineers need to understand how they can integrate mechanical engineering concepts

with a computer language in order to simulate concepts or automate them at a faster

pace. Python for that matter is an extremely easy and efficient programming language.

It can solve complex problems in a matter of seconds. Even if we are a

mechanical/automobile engineer, Python can still be handy for us on many occasions.

Areas, where Python is used in the mechanical engineering industry, includes but are

not limited to,

Numerical analysis:
The most popular application of python is to perform numerical analysis. When

problems linear equations and ODE/PDE are involved, it would take a long time to

solve the problems analytically. In terms of mechanical engineering, there are usually

boundary conditions present which make it twice harder to solve numerical analysis

problems.

Let us assume we are trying to find the pressure difference across a pipe when there is a

liquid flowing through it. Not only will the problem take forever to solve, but it will also

be extremely hard to obtain accurate values or plot the differences in a graph.

With programming languages, we can solve such problems in a matter of seconds and

obtain graphical simulations at the same instant.

Learning numerical analysis and coding opens up a plethora of opportunities in areas

like manufacturing, automotive, energy, and even mechanical jobs in software

companies (like thermal engineers). Software companies like Google and Facebook hire

Mechanical/Thermal engineers to ensure efficient and safe thermal management of their

database and cluster computers in their respective companies. These engineers use
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programming languages like MATLAB/Python to write scripts and then import them to

CFD software to test numerous designs. It is common knowledge that Google has the

following engineering motto “Python where we can, C++ where we must” because

Python is less complex to use than C++.

Thermodynamics:
Python can be used to solve classical thermodynamics problems. Whether our problem

involves chemical kinetics or fluid dynamics, we can write a code to solve the problem

and save our time. In the real world, industries do not pay attention to how we solve our

problems or complete our tasks. We can spend 60% of your time solving mathematical/

thermodynamics problems and rush through the other 40% of the task or you can spend

20% of your time on these problems by solving them in Python and focusing on the real

troubles at hand. The only aspect of our outcome that matters is our efficiency. Python

has a huge library and a simple syntax that can help us to solve complex problems

easily.

CFD:
In the field of computational fluid dynamics, Python has a massive application. In

order to simulate problems in CFD software, we will be required to write our scripts in

programming languages like MATLAB/Python.

Python is also used in other areas of mechanical engineering like vibrations and

dynamic motion, simulation and modelling engineering etc. Mechanical and automobile

industries use python to automate tasks. Even when the script is written in another

programming language, it is rewritten in Python before automation since it is the most

common language and hence the interface between industries and codes.

A look at the careers page of companies like Tesla, Mercedes Benz and Boeing, etc.

reveal that they employ and prefer mechanical engineers who can code.
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1.3.1 Python Libraries

A Python library is a collection of related modules. It contains bundles of code that

can be used repeatedly in different programs.More than 200 core modules sit at the

heart of the standard library.

1.3.2 Python Libraries used in code

1.Matplotlib

Matplotlib helps with data analyzing, and is a numerical plotting library.

2.SciPy

One of the libraries we have been talking so much about. It has a number of user-

friendly and efficient numerical routines.

These include routines for optimization and numerical integration.

3.NumPy

It is a python library used for working with arrays.It has functions for working

in domain of linear algebra,fourier transform ,and matrices.

4.Math

The python Math library provides us access to some common math functions

and constants in python,which we can use throughout our code for more complex

mathematical computations.
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1.3.3 Anaconda

Anaconda is a distribution of the Python and R programming languages for scientific

computing (data science, machine learning applications, large-scale data processing,

predictive analytics, etc.), that aims to simplify package management and deployment.

The distribution includes data-science packages suitable for Windows, Linux, and

macOS. It is developed and maintained by Anaconda, Inc., which was founded by

Peter Wang and Travis Oliphant in 2012.

Package versions in Anaconda are managed by the package management system

conda.

Anaconda distribution comes with over 250 packages automatically installed, and

over 7,500 additional open-source packages can be installed from PyPI as well as the

conda package and virtual environment manager. It also includes a GUI, Anaconda

Navigator,as a graphical alternative to the command-line interface (CLI).

Anaconda Navigator

Anaconda Navigator is a desktop graphical user interface (GUI) included in Anaconda

distribution that allows users to launch applications and manage conda packages,

environments and channels without using command-line commands. Navigator can

search for packages on Anaconda Cloud or in a local Anaconda Repository, install

them in an environment, run the packages and update them. It is available for Windows,

macOS and Linux.

The following applications are available by default in Navigator:

●JupyterLab

●Jupyter Notebook

●QtConsole

●Spyder
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1.3.4 Jupyter Notebook

The Jupyter Notebook is an open source web application that you can use to create

and share documents that contain live code, equations, visualizations, and text. Jupyter

Notebook is maintained by the people at Project Jupyter.

Jupyter Notebooks are a spin-off project from the IPython project, which used to have

an IPython Notebook project itself. The name, Jupyter, comes from the core supported

programming languages that it supports: Julia, Python, and R. Jupyter ships with the

IPython kernel, which allows you to write your programs in Python, but there are

currently over 100 other kernels that you can also use.

The best method of installing the Jupyter Notebooks is by the installation of the

Anaconda package. The Jupyter Notebook and the Jupyter Lab comes pre-installed in

the Anaconda package.

1.4 Introduction to Finite Element Analysis

Finite Element Analysis (FEA) is method used for the evaluation of structures,

providing an accurate prediction of components response subjected to various

structural loads.

It is a computerized method for predicting how a product reacts to real world forces,

vibration, heat, fluid flow and other physical effects.

FEA works by breaking down a real object into a mesh of large number of finite

elements, that combine to create shape of structure that is being assessed. Each of

these small elements are subjected to calculations, with these mesh refinements

combining to produce the final result of the whole structure.
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1.5 Introduction to Beams

Beam:

Beam is a horizontal structure member used to carry vertical load, shear load and

sometime horizontal load. It is the major component of building structures. It mainly

use in construction of bridges, trusses, and other structures which carry vertical load.

1.5.1 Types of Beams

1. According to end support:

Simply supported beams:

Simply supported beam is supported at both end. One end of the beam is

supported by hinge support and other one by roller support. This support

allow to horizontal movement of beam. It beam type undergoes both shear

stress and bending moment.

Fig.1.1 Simply supported beam

Continuous beams:

This beam is similar to simply supported beam except more than two support

are used on it. One end of it is supported by hinged support and other one is

roller support. One or more supports are use between these beams. It is used
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in long concrete bridges where length of bridge is too large.

Fig.1.2 Continuous beam

Over hanging beams:

Overhanging beam is combination of simply supported beam and cantilever

beam. One or both of end overhang of this beam. This beam is supported by

roller support between two ends.

Fig.1.3 Over hanging beam

`Cantilever beams:

Cantilever beams a structure member of which one end is fixed and other is

free. This is one of the famous type of beam use in trusses, bridges and other

structure member.

Fig.1.4 Cantilever beam
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Fixed beams:

This beam is fixed from both ends. It does not allow vertical movement and

rotation of the beam. It is only under shear stress and no moment produces in

this beams.

Fig.1.5 Fixed beam

2. According to cross section:

I-section beam:

Has high resistance to bending.

Fig.1.6 I-Section beam
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Rectangular beam:

This type of beam is widely used in the construction of reinforced concrete

buildings and other structures.

Fig.1.7 Rectangular beam

T-section beam:

Mostly constructed with a reinforced concrete slab.Isolated T-beam is built

to increase the compression strength of concrete.

Fig.1.8 T-Section beam

L-section beam:

This type of beam is constructed monolithically with a reinforced concrete

slab at the perimeter of the structure.
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Fig.1.9 L-Section beam

Square, circular, H-shaped, C-shaped, and tubular are some of the other examples of

beam cross-sectional shapes constructed from steel.

3. Based on geometry:

Straight beam:

Beam with a straight profile and the majority of beams in structures are

straight beams.

Fig.1.10 Straight beam
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Curved beam:

Beam with curved profile, such as in the case of circular buildings.

Fig.1.11 Curved beam

Tapered beam:

Beam with tapered cross section.

Fig.1.12 Tapered beam

4. Based on equilibrium condition:

Statically determinate beam:

For a statically determinate beam, equilibrium conditions alone can be used

to solve reactions. The number of unknown reactions is equal to the number

of equations.
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Fig.1.13 Statically determinate beam

Statically indeterminate beam:

For a statically indeterminate beam, equilibrium conditions are not enough to

solve reactions. So, the analysis of this type of beam is more complicated than

that of statically determinate beams.

Fig.1.14 Statically indeterminate beam
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1.5.2 Types of load acting on beam:

A beam is usually horizontal member and load which will be acting over the beam

will be usually vertical loads. There are following types of loads:

1.Point load or concentrated load:

Point load or concentrated load, as name suggest, acts at a point on the beam.

Fig.1.15 Point load or Concentrated load

2.Uniformly distributed load:

Uniformly distributed load is the load which will be distributed over the length of the

beam in such a way that rate of loading will be uniform throughout the distribution

length of the beam.

Uniformly distributed load is also expressed as U.D.L and with value as w N/m.

Fig.1.16 Uniformly distributed load
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3. Uniformly varying load:

Uniformly varying load is the load which will be distributed over the length of the beam

in such a way that rate of loading will not be uniform but also vary from point to point

throughout the distribution length of the beam.Uniformly varying load is also termed as

triangular load.

Fig.1.17 Uniformly varying load

1.6 Introduction to ANSYS

ANSYS(Analysis of Systems) mechanical APDL(ANSYS Parametric Design

Language) has become a powerful tool for finite element analysis to solve enormous

range of mechanical engineering applications. It has capabilities to solve problems

ranging from simple, linear, static analysis to a complex, nonlinear, transient dynamic

analysis, in the fields of stress analysis, fluid and heat transfer, etc.
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1.7 PROBLEM STATEMENT

1.Finding Shear stress and Bending moment and do Structural analysis of a continuous

beam using ANSYS(Analysis of Systems) software.

2.Developing a python program that gives the structural analysis of a continuous beam as

output.

3.Verifying and compare the results obtained using ANSYS software with the results

obtained using python program.

4.By comparing both the results, a final python program is developed that gives accurate

results.

5.Extend Python code for modal analysis.

This python code can be used for analysis of any type of beam.
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CHAPTER-2

LITERATURE SURVEY



26

Literature Survey

Dorival et.al.,[1] investigated that the Generalized Finite Element Method (GFEM) is

a numerical method based on the Finite Element Method (FEM), presenting as its

main feature the possibility of improving the solution by means of local enrichment

functions. In spite of its advantages, the method demands a complex data structure,

which can be especially benefited by the Object-Oriented Programming (OOP). Even

though the OOP for the traditional FEM has been extensively described in the

technical literature, specific design issues related to the GFEM are yet little discussed

and not clearly defined. In the present article it is described an Object-Oriented (OO)

class design for the GFEM, aiming to achieve a computational code that presents a

flexible class structure, circumventing the difficulties associated to the method

characteristics. The proposed design is evaluated by means of some numerical

examples, computed using a code implemented in Python programming language.

Aleves et.al.,[2] The objective computing project was created with the intention of

writing a fully interactive-adaptive finite element program using the object oriented

programming philosophy. In a first phase of the project, a graphical environment was

developed to simplify and generalize the interactive programming concept. The

resulting interface library gives the programmer easy access to graphical user

interface tools such as windows, menus and dialogs. In order to improve programmer

efficiency, the same interface library is being implemented to run under various

existing toolboxes such as Macintosh, MS-Windows, OSF/Motif and others. During

the second phase of the project, an innovative finite element data structure is

developed which will be used as a finite element research platform.

Bordas et.al.,[3] This paper presents and exercises a general structure for an

object‐oriented‐enriched finite element code. The programming environment provides

a robust tool for extended finite element (XFEM) computations and a modular and

extensible system. The programme structure has been designed to meet all natural

requirements for modularity, extensibility, and robustness. To facilitate mesh–

geometry interactions with hundreds of enrichment items, a mesh generator and mesh
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database are included. The salient features of the programme are: flexibility in the

integration schemes (subtriangles, subquadrilaterals, independent near‐tip, and

discontinuous quadrature rules); domain integral methods for homogeneous and

bi‐material interface cracks arbitrarily oriented with respect to the mesh; geometry is

described and updated by level sets, vector level sets or a standard method; standard

and enriched approximations are independent; enrichment detection schemes:

topological, geometrical, narrow‐band, etc.; multi‐material problem with an arbitrary

number of interfaces and slip‐interfaces; non‐linear material models such as J2

plasticity with linear, isotropic and kinematic hardening. To illustrate the possible

applications of our paradigm, we present 2D linear elastic fracture mechanics for

hundreds of cracks with local near‐tip refinement, and crack propagation in two

dimensions as well as complex 3D industrial problems.

Duarte et.al.,[4] A new methodology to build discrete models of boundary-value

problems is presented. The h-pcloud method is applicable to arbitrary domains and

employs only a scattered set of nodes to build approximate solutions to BVPs. This

new method uses radial basis functions of varying size of supports and with

polynomial reproducing properties of arbitrary order. The approximating properties of

the h-p cloud functions are investigated in this article and a several theorems

concerning these properties are presented. Moving least squares interpolants are used

to build a partition of unity on the domain of interest. These functions are then used to

construct, at a very low cost, trial and test functions for Galerkin approximations. The

method exhibits a very high rate of convergence and has a greater -exibility than

traditional h-p finite element methods. Several numerical experiments in I-D and 2-D

are also presented.

Tom et.al.,[5] Partial differential equations (PDEs)—such as the Navier–Stokes

equations in fluid mechanics, the Maxwell equations in electromagnetism, and the

Schrödinger equation in quantum mechanics—are the basic building blocks of

modern physics and engineering. The finite element method (FEM) is a flexible

computational technique for the discretization and solution of PDEs, especially in the
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case of complex spatial domains. Conceptually, the FEM transforms a time-

independent (or temporally discretized) PDE into a system of linear equations Ax = b.

scikit-fem is a lightweight Python library for the creation, or assembly, of the finite

element matrix A and vector b. The user loads a computational mesh, picks suitable

basis functions, and provides the PDE’s weak formulation (Logg, Mardal, Wells, &

others, 2012). This results in sparse matrices and vectors compatible with the SciPy

(Virtanen et al., 2020) ecosystem.

Cimrman et.al.,[6] SfePy (simple finite elements in Python) is a software for solving

various kinds of problems described by partial differential equations in one, two, or

three spatial dimensions by the finite element method. Its source code is mostly (85%)

Python and relies on fast vectorized operations provided by the NumPy package. For

a particular problem, two interfaces can be used: a declarative application

programming interface (API), where problem description/definition files (Python

modules) are used to define a calculation, and an imperative API, that can be used for

interactive commands, or in scripts and libraries. After outlining the SfePy package

development, the paper introduces its implementation, structure, and general features.

The components for defining a partial differential equation are described using an

example of a simple heat conduction problem. Specifically, the declarative API of

SfePy is presented in the example. To illustrate one of SfePy’s main assets, the

framework for implementing complex multiscale models based on the theory of

homogenization, an example of a two-scale piezoelastic model is presented, showing

both the mathematical description of the problem and the corresponding code.

Hunter et.al.,[7] Matplotlib is a 2D graphics package for Python for application

development, interactive scripting, and publication-quality image generation across

user interfaces and operating systems.
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CHAPTER-3

NUMERICAL ANALYSIS

OF A CONTINUOUS BEAM
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3.0 METHODOLOGY

The present work consists of two parts. In the first part a fully working python code

was developed using finite element procedure in the jupyter notebook(Jupyter

Notebook (open source code), which began as the iPython Notebook project, is

development environment for writing and executing Python code. Jupyter Notebook

is often used for exploratory data analysis and visualization.

Project Jupyter is the top-level project name for all of the sub projects under

development, which includes Jupyter Notebook. Jupyter Notebooks can also run code

for other programming languages such as Julia and R.) which is accompanied by python

3.9.10.in the second part, the results obtained using python are compared with the

results obtained from ANSYS APDL 2021 R21 software. The python developed in this

current work is applicable for any type of beam structure of isotropic material and

different loading and support conditions. This python code is used to investigate both

static and vibrational analysis (A technique used to determine a structure’s vibration

characteristics: – Natural frequencies – Mode shapes – Mode participation factors (how

much a given mode participates in a given direction). It is most fundamental of all the

dynamic analysis types. Modal analysis allows the design to avoid resonant vibrations or

to vibrate at a specified frequency (speakers, for example). Gives engineers an idea of

how the design will respond to different types of dynamic loads. Helps in calculating

solution controls (time steps, etc.) for other dynamic analysis.

Because a structure’s vibration characteristics determine how it responds to any type of

dynamic load, always perform a modal analysis first before trying any other dynamic

analysis) of any beam structure. To check whether the code developed was giving exact

results, the present work considered any type of beam problem and the data was taken

from the textbook of introduction to finite elements by Chandrapatla and Daryl L. Logan.
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3.1 Step-wise procedure for Numerical analysis

(Structural and Modal) of a beam in ANSYS APDL

The following beam has been taken as an example for analyzing and later the results

will be compared.

Fig.3.1 Example beam for analysis in ANSYS APDL

ELEMENT CONNECTIVITY TABLE

ELEMENT NO. NODE 1 NODE 2

1 1 2

2 2 3

3 3 4

4 4 5

5 5 6

6 6 7

7 7 8

8 8 9

Table.3.1 Element connectivity table for example beam
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3.1.1 Preprocessor
To begin the analysis, a preference needs to be set. Preferences allow you to apply

filtering to the menu choices; ANSYS will remove or gray out functions that are not

needed. A structural analysis, for example,will not need all the options available for a

thermal, electromagnetic, or fluid dynamic analysis.

> Main Menu > Preferences

Place a check mark next to the Structural box.

> OK

Look at the ANSYS Main Menu.

Click once on the “+” sign next to Preprocessor.

> Main Menu > Preprocessor

The Preprocessor options currently available are displayed in the expansion of the Main

Menu tree as shown to the right. The most important preprocessing functions are

defining the element type, defining real constraints and material properties, and modeling

and meshing the geometry.

Fig.3.2 Preprocessor step1
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The ANSYS Main Menu is designed in such a way that you should start at the beginning

and work towards the bottom of the menu in preparing, solving, and analyzing your

model.

Note: This procedure will be shown throughout the tutorial.Select the “+” next to

Element Type or click on Element Type. The extension of the menu is shown to the right.

> Element Type

Select Add/Edit/Delete and the Element Type window appears.

Select add and the Library of Element Types window appears.

> Add/Edit/Delete > Add

In this window, select the types of elements to be defined and used for the problem. For a

pictorial description of what each element can be used for, click on the Help button.

For this model 2D Elastic Beam elements will be used.

> Beam > 2 node 188> OK

Fig.3.3 Preprocessor step2

The material properties for the Beam element need to be defined.

> Preprocessor > Material Props > Material Models

The Define Material Models Behavior window should now be open. We will use
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isotropic, linearly, elastic, structural properties.

Select the following from the Material Models Available window:

> Structural > Linear > Elastic > Isotropic

The window titled Linear Isotropic Properties for Material Number 1 now appears.

Fig.3.4 Preprocessor step3

Enter 2e5 for EX (Young's Modulus) and 0.3 for PRXY (Poission’s Ratio).

> OK

Close the Define Material Model Behavior window.

> Material > Exit

Fig.3.5 Preprocessor step4
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The next step is to define the keypoints(KP’s) that will help you build the rest of your

model:

> Preprocessing > Modeling > Create > Keypoints > In Active CS

Fig.3.6 Preprocessor step5

The Create Keypoints in Active CS window will now appear. Here the KP’s will be

given numbers and their respective (XYZ)coordinates. Enter the KP numbers and

coordinates that will correctly define the beam.

Select Apply after each KP has been defined.

KP # 1: X=0, Y=0, Z=0

KP # 2: X=1000, Y=0, Z=0

KP # 3: X=2000, Y=0, Z=0

KP # 4: X=3000, Y=0, Z=0

KP # 5: X=4000, Y=0, Z=0

KP # 6: X=5000, Y=0, Z=0

KP # 7: X=6000, Y=0, Z=0

KP # 8: X=7000, Y=0, Z=0

KP # 9: X=8000, Y=0, Z=0

Select OK when complete. In case you make a mistake in creating the keypoints, select:

> Preprocessing > Modeling > Delete > Keypoints
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Select the incorrect KP’s and select OK.

The next step is to create lines between theKP’s.

> Preprocessing > Modeling > Create > Lines > Straight Lines

The Create Straight Lines window should appear. You will create 8 lines. Create line

1between the first two keypoints.The other lines will be created in a similar manner.

Verify that each line only goes between the specified keypoints. When you are done

creating the lines click ok in the Create Straight Lines window.

> OK

If you make a mistake, use the followingsteps to delete the lines:

> Preprocessing > Modeling > Delete > Lines

Only You should now have something similar to the image shown :

Fig.3.7 Preprocessor step6
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Now that the model has been created, it needs to be meshed. Models must be meshed

before they can be solved. Models are meshed with elements.First, the element size

needs to be specified.

> Preprocessing > Meshing > Size Cntrls > Manual Size > Lines >

All Lines The Element Sizes on All Selected Lines window should appear. From this

window,the number of divisions per element can be defined and also the element edge

length.

Here we are giving element division as 2.

With the mesh parameters complete, the lines representing the beam can now be meshed.

Select:

> Preprocessing > Meshing > Mesh > Lines

From the Mesh Lines window select PickAll.

> Pick all

Selecting Pick all will mesh all of the line segments that have been created.The meshed

line should appear similar to the one shown . This completes the preprocessing stage.

Fig.3.8 Preprocessor step7
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However, the current view probably shows just the elements and not the keypoints. You

can see both the elements and the keypoints on the screen by selecting:

> Plot > Multiplots

To see just the keypoints;

> Plot > Keypoints

Use the plot menu to view your model in the way that will make it easier to complete

each step.

Fig.3.9 Preprocessor step8

The constraints and degrees of freedom should be applied at respective keypoints.

>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>On Keypoints

Select Keypoint 1 and select All DOF in DOFs to be constrained box.

>Apply

Select Keypoint 5 and select UY for roller support.

>Apply



39

Similarly apply UY as constraints on Keypoint 9 as it is roller supported.

>Ok

Fig.3.10 Preprocessor Step9

The distributed loads will now be applied to the beam.

> Preprocessor >Loads> Define Loads > Apply> Structural > Pressure > On Beams

Select all the elements between keypoints 1 and 5.

> Apply

The expanded Apply Pressure on Beams window should appear. From this window the

direction of the pressure and its magnitude can be specified. Enter 12 in the Pressure at

Node i and 12 in the pressure node at Node j value field which will apply the pressure

over the beam from keypoints 1 to 2. A positive entry in this field is defined as a

downward pressure.

>Ok

Add the other two distributed load in a similar manner. Use the same commands as
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shown.For the second distributed load select all of the elements between KP5 and KP9.

Set the value at node i and node j to be 24.

> OK

The model is now completed.

Fig.3.11 Preprocessor step10

If you wish to view a 3D picture of your model select

> Plot Controls > Style > Size and Shape

The Size and Shape window opens. Click the check box next to Display of Element to

turn on the 3D image.

> OK

Now when you rotate your model using CTRL + MB3 , the model should appear to be

3D.
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Fig.3.12 Preprocessor step11

3.1.2 Solution
The next step is to solve the current load step that has been created. Select:

Solution > Solve > Current LS

A note will be appeared as solution is done.

>Close
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Fig.3.13 Solution step

3.1.3 Postprocessor
There are several different ways to view the results of a solution. To find the shear and

bending moment diagrams we define what is called an element table and then plot a

contour plot.Defining an element table is nothing more than a way of telling ANSYS

which solution items you want to see. To define an element table, select the following:

> General Postproc > Element Table> Define Table

The Element Table Data window now appears. Select Add..

> Add...

We will define the element table items by using the “By sequence num”

option. For the Beam element, the sequence numbers for the I moment

(at left end of beam) and the J moment (at right end of beam) are 3 and 16.

The sequence numbers for the forces in the Y direction are 6 and 19. The

sequence numbers can be found for any element in the help documentation.

Simply do a search in help for the element that you are using, and then

scroll down in the text to find the table that lists the sequence numbers.
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Fig.3.14 Postprocessor step1

Give the first item a label name of I moment, select By sequence number, select SMISC,

and type in the number 3.

> Apply

Give the second item a label name of J moment, select By sequence number, select

SMISC, and type in the number 16.

> Apply

Give the third item a label name of I force, select By sequence number, select SMISC,

and type in the number 6 as shown to the right.

> Apply

Give the fourth item a label name of J force, select By sequence number, select SMISC,

and type in the number 19 as shown to the right.

> OK

When you are done you should have four items in

the Element Table Data window.

Close the Element Table Data window.

> Close
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Fig.3.15 Postprocessor step2

The shear force diagram will now be plotted.

> General Postproc > Plot Results > Contour Plot > Line Elem Res

The Plot Line-Element Results window now appears.

Select SMIS6 the table item at node I and SMIS19 as the table item at node J.

> OK

The shear force diagram is plotted on the screen.

From the diagram, the max and min shear force can easily be seen.
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Fig.3.16 Shear force diagram from ANSYS APDL

The bending moment diagram will now be plotted.

> General Postproc > Plot Results > Contour Plot > Line Elem Res

The Plot Line-Element Results window now appears.Select SMIS3 as the table item at

node I and SMIS16 as the table item at node J.

> OK

The bending moment diagram is plotted on the screen.

From the diagram, the max and min bending moment can easily be seen.
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Fig.3.17 Bending moment diagram from ANSYS APDL

Deformed shape

Fig.3.18 Deformed shape of beam from ANSYS APDL



47

Nodal deflection

Fig.3.19 Nodal deflection diagram from ANSYS APDL

Nodal slopes

Fig.3.20 Nodal slope diagram from ANSYS APDL
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Von Mises stress

Fig.3.21 Von Mises stress diagram from ANSY APDL
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Nodal deflections(Uy) Nodal slopes(Mz)

in mm in rad.

Table.3.2 Nodal deflections Table.3.3 Nodal slopes

from ANSYS APDL from ANSYS APDL

Reaction forces(in N) Reaction moment(in N-mm)

NODE 1 17186

NODE 2 87282

NODE 3 39532

Table.3.4 Reaction forces Table.3.5 Reaction moment

from ANSYS APDL from ANSYS APDL

NODE 1 0.00

NODE 2 -1.1242

NODE 3 1.6806

NODE 4 7.3962

NODE 5 0.00

NODE 6 -32.608

NODE 7 -55.526

NODE 8 -43.187

NODE 9 0.00

NODE 1 0.00

NODE 2 -0.0003378

NODE 3 0.005808

NODE 4 0.003424

NODE 5 -0.022465

NODE 6 -0.035129

NODE 7 -0.0072174

NODE 8 0.031292

NODE 9 0.05838

NODE 1 6613000
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Natural frequencies(in Hertz)

NODE FREQUENCY

1 0.0010517

2 0.0068072

3 0.015030

4 0.020348

5 0.027770

6 0.044255

7 0.071635

8 0.084450

9 0.089786

Table.3.6 Natural frequencies from ANSYS APDL
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3.2 Python code for analyzing the beams
# importing libraries

import math

import matplotlib.pyplot as plot

import numpy as np

file = open(r"D:\Remo desktop\PhD work\project 2022\out.txt","w+")

noofelements=int(input("enter the total number of elements"))

file.write("the total number of elements= "+str(noofelements)+ '\n')

noofnodes=noofelements+1

file.write("the total number of nodes= "+str(noofnodes)+ '\n')

length_of_beam=float(input("enter total length of the beam in mm"))

length_of_element=length_of_beam/noofelements

coordinates={}

a_val=0

b_val=0

y_diff=float(input("enter 0 or enter y value difference for coordinates:"))

for i in range(1,noofnodes+1):

coordinates[i]=[a_val,b_val]

a_val+=length_of_element

b_val+=y_diff

file.write('coordinates for node' + str(i)+ 'in mm : '+ str(coordinates[i])+ '\n')

print('coordinates for node' + str(i)+ 'in mm : '+ str(coordinates[i])+ '\n')

elasticity=float(input("enter the modulus of elasticity in N/mm-square"))

density=float(input("enter density in gm/mm-cube "))

file.write("modulus of elasticity in N/mm-square= "+str(elasticity)+ '\n')

startend={}

for i in range(1,noofelements+1):

startend[i]=[i,i+1]

file.write('the start node and end node for element '+ str(i)+ ' :'+str(startend[i])+ '\n')
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print('the start node and end node for element '+ str(i)+ ' :'+str(startend[i])+ '\n')

print("enter the shape of cross section")

print("1 for rectangle")

print("2 for hollow rectangle")

print("3 for triangle")

print("4 for circle")

print("5 for hollow circle")

print("6 for I section")

print("7 for T section")

print("8 for C section")

print("9 for L section")

print("10 enter moment of inertia value in mm power 4")

cross_section=int(input())

cs=cross_section

if(1==cs):

b=float(input("enter width in mm"))

d=float(input("enter depth in mm"))

I=(b*(d**3))/12

print("area moment of inertia of rectangle section in mm power 4:",I)

area=b*d

elif(2==cs):

b=float(input("enter width in mm"))

d=float(input("enter depth in mm"))

b1=float(input("enter inner width in mm"))

d1=float(input("enter inner depth in mm"))

I=((b*(d**3))/12)-((b1*(d1**3))/12)

print("area moment of inertia of hollow rectangle section in mm power 4:",I)

area=(b*d)-(b1*d1)

elif(3==cs):

b=float(input("enter base in mm"))

d=float(input("enter height in mm"))
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I=(b*(d**3))/36

print("area moment of inertia of triangle section in mm power 4:",I)

area=0.5*b*d

elif(4==cs):

d=float(input("enter diameter of circle in mm"))

I=(math.pi*(d**4))/64

print("area moment of inertia of circle section in mm power 4:",I)

area=(math.pi/4)*(d**2)

elif(5==cs):

d=float(input("enter outer diameter of circle in mm"))

d1==float(input("enter inner diameter of circle in mm"))

I=((math.pi*(d**4))/64)-((math.pi*(d1**4))/64)

print("area moment of inertia of circle section in mm power 4:",I)

area=((math.pi/4)*(d**2 - d1**2))

elif(6==cs):

b1=float(input("enter top flamge width in mm"))

d1=float(input("enter top flamge thickness in mm"))

b2=float(input("enter web thickness in mm"))

d2=float(input("enter web depth in mm"))

b3=float(input("enter bottom flamge width in mm"))

d3=float(input("enter bottom flamge thickness in mm"))

a1=b1*d1

a2=b2*d2

a3=b3*d3

y1=(d2+(d1/2))+d3

y2=(d2/2)+d3

y3=d3/2

yc=(a1*y1+a2*y2+a3*y3)/(a1+a2+a3)

I=((b1*(d1**3))/12)+(a1*((yc-y1)**2))+((b2*(d2**3))/12)+(a2*((yc-

y2)**2))+((b3*(d3**3))/12)+(a3*((yc-y3)**2))
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print("area moment of inertia of I section in mm power 4:",I)

area=a1+a2+a3

elif(7==cs):

b1=float(input("enter flamge width in mm"))

d1=float(input("enter flamge thickness in mm"))

b2=float(input("enter web thickness in mm"))

d2=float(input("enter web depth in mm"))

a1=b1*d1

a2=b2*d2

y1=(d2+(d1/2))

y2=d2/2

yc=(a1*y1+a2*y2)/(a1+a2)

I=((b1*(d1**3))/12)+(a1*((yc-y1)**2))+((b2*(d2**3))/12)+(a2*((yc-y2)**2))

print("area moment of inertia of T section in mm power 4:",I)

area=a1+a2

elif(8==cs):

b1=float(input("enter top flamge width in mm"))

d1=float(input("enter top flamge thickness in mm"))

b2=float(input("enter web thickness in mm"))

d2=float(input("enter web depth in mm"))

b3=float(input("enter bottom flamge width in mm"))

d3=float(input("enter bottom flamge thickness in mm"))

a1=b1*d1

a2=b2*d2

a3=b3*d3

y1=(d2+(d1/2))+d3

y2=(d2/2)

y3=d3/2

yc=(a1*y1+a2*y2+a3*y3)/(a1+a2+a3)
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I=((b1*(d1**3))/12)+(a1*((yc-y1)**2))+((b2*(d2**3))/12)+(a2*((yc-

y2)**2))+((b3*(d3**3))/12)+(a3*((yc-y3)**2))

print("area moment of inertia of C section in mm power 4:",I)

area=a1+a2+a3

elif(9==cs):

b1=float(input("enter flamge width in mm"))

d1=float(input("enter flamge thickness in mm"))

b2=float(input("enter web thickness in mm"))

d2=float(input("enter web depth in mm"))

a1=b1*d1

a2=b2*d2

y1=(d1/2)

y2=d2/2+d1

yc=(a1*y1+a2*y2)/(a1+a2)

I=((b1*(d1**3))/12)+(a1*((yc-y1)**2))+((b2*(d2**3))/12)+(a2*((yc-y2)**2))

print("area moment of inertia of L section in mm power 4:",I)

area=a1+a2

else:

I=float(input())

print("moment of inertia in mm power 4",I)

area=float(input("enter area in mm-square"))

print("area=",area)

stiffness={}

L=length_of_element

E=elasticity

for i in range(1,noofelements+1):

mat=np.array([[12*E*I/L**3, (6*E*I)/(L**2), -12*E*I/L**3, 6*E*I/L**2],

[6*E*I/L**2, 4*E*I/L, -6*E*I/L**2, 2*E*I/L],
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[-12*E*I/L**3, -6*E*I/L**2, 12*E*I/L**3, -6*E*I/L**2],

[6*E*I/L**2, 2*E*I/L, -6*E*I/L**2, 4*E*I/L]])

for j in range(4):

for k in range(4):

mat[j][k]=mat[j][k]

print("stiffness matrix of element "+str(i))

for j in range(4):

for k in range(4):

print(mat[j][k],end=' ')

print()

print()

print()

stiffness[i]=mat

mass={}

L=length_of_element

for i in range(1,noofelements+1):

mat=np.array([[156,22*L,54,-1*34*L],[22*L,4*L**2,13*L,-1*3*L**2],[54,13*L,156,-

1*22*L],[-1*13*L,-1*3*L**2,-1*22*L,4*L**2]])

a=(area*density*L)/420

for j in range(4):

for k in range(4):

mat[j][k]=a*mat[j][k]

print("mass matrix of element "+str(i))

for j in range(4):

for k in range(4):

print(mat[j][k],end=' ')

print()

print()

print()

mass[i]=mat
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ndof = noofnodes * 2

print(ndof)

globstifmat=[]

for i in range(ndof):

globstifmat.append([0]*ndof)

x=0

asinode={}

for i in range(1,noofnodes+1):

asinode[i]=[x,x+1]

x+=2

e=startend

n=asinode

d={}

for i in range(1,noofelements+1):

x=[]

p=e[i]

q=p[0]

r=p[1]

x.extend([n[q][0],n[q][1],n[r][0],n[r][1]])

d[i]=x

for i in d:

print(d[i])

for i in range(ndof):

for j in range(ndof):

s=0

for k in d:

if(i in d[k] and j in d[k]):
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zzz=stiffness[k]

s+=zzz[d[k].index(i)][d[k].index(j)]

globstifmat[i][j]=s

print("global stiffness matrix ")

for j in range(ndof):

for k in range(ndof):

print(globstifmat[j][k],end=' ')

print()

print()

print(len(globstifmat))

print(len(globstifmat[0]))

ndof = noofnodes * 2

print(ndof)

globmassmat=[]

for i in range(ndof):

globmassmat.append([0]*ndof)

for i in range(ndof):

for j in range(ndof):

s=0

for k in d:

if(i in d[k] and j in d[k]):

zzz=mass[k]

s+=zzz[d[k].index(i)][d[k].index(j)]

globmassmat[i][j]=s

print("global mass matrix ")

for j in range(ndof):

for k in range(ndof):

print(globmassmat[j][k],end=' ')

print()

print()
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#load vector and boundary conditions

noofsuppnodes=int(input("enter the total number of nodes having supports"))

file.write('the total number of nodes having supports '+str(noofsuppnodes)+ '\n')

nodesandtypesupport=[]

for i in range(noofsuppnodes):

x=int(input("enter the node number having support"))

print("enter the type of support")

print("h for hinged")

print("f for fixed")

print("r for roller/pin support")

t=input()

file.write('the node number having support is '+str(x)+' type of support is '+t+ '\n')

nodesandtypesupport.append([x,t.lower()])

print(nodesandtypesupport)

print("enter total number of point load nodes")

pln1=int(input())

y_dir1=[0]*ndof

rot1=[0]*ndof

for i in range(pln1):

print("enter node number")

nn1=int(input())

print("enter y direction i Newton and rotation in N-mm ( comma seperated)")

print("hint: upward is +ve and anticlock wise is +ve")

tp1=input().split(',')

a1=tp1[0]

b1=tp1[1]

y_dir1[nn1]=float(a1)

rot1[nn1]=float(b1)

print("load vector due to point load")

print(y_dir1)

print(rot1)

comb1=[]
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for i in range(len(y_dir1)):

comb1.append(y_dir1[i]+rot1[i])

print(comb1)

print("enter total number of point couple or moment load nodes")

pln2=int(input())

y_dir2=[0]*ndof

rot2=[0]*ndof

for i in range(pln2):

print("enter node number")

nn2=int(input())

print("enter y direction i Newton and rotation in N-mm ( comma seperated)")

print("hint: upward is +ve and anticlock wise is +ve")

tp2=input().split(',')

a2=tp2[0]

b2=tp2[1]

y_dir2[nn2]=float(a2)

rot2[nn2]=float(b2)

print("load vector due to point couple or moment load")

print(y_dir2)

print(rot2)

comb2=[]

for i in range(len(y_dir2)):

comb2.append(y_dir2[i]+rot2[i])

print(comb2)

L=length_of_element

print("enter total number of UDL load elements")

udl_ele=int(input())

load_li=[0]*ndof

for i in range(udl_ele):

print("enter element number")

ele=int(input())

print("enter UDL load value in N/mm")
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udl_load=float(input())

form=[(udl_load*L)/2,(udl_load*(L**2))/12,(udl_load*L)/2,-1*(udl_load*(L**2))/12]

print(form)

node1=ele

node2=ele+1

dof1=2*node1-1

dof2=2*node1

dof3=2*node2-1

dof4=2*node2

load_li[dof1-1]+=form[0]

load_li[dof2-1]+=form[1]

load_li[dof3-1]+=form[2]

load_li[dof4-1]+=form[3]

print(load_li)

#uvl

uvl_li=[0]*ndof

print("enter number of starting uvl loads")

num=int(input())

for j in range(num):

print("enter total number of uvl load elements for ",j+1,"load")

uvl=int(input())

print("left side uvl load in N/mm")

left=float(input())

print("right side uvl load in N/mm")

right=float(input())
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print("enter uvl load length in mm")

loadlen=float(int(input()))

rate=((right-left)*L)/(loadlen)

print(rate)

def fun(left):

a=[(left*L)/2,(left*(L**2))/12,(left*L)/2,-1*(left*(L**2))/12]

b=[(3*rate*L)/20,(rate*(L**2))/30,(7*rate*L)/20,(-1*rate*(L**2))/20]

zz=[]

for i in range(4):

zz.append(a[i]+b[i])

return zz

print("enter starting uvl element number")

ele=int(input())

for i in range(uvl):

form=fun(left+rate*(ele+i-1))

print("for element",ele+i,"uvl load is",form)

node1=ele+i

node2=ele+i+1

dof1=2*node1-1

dof2=2*node1

dof3=2*node2-1

dof4=2*node2

uvl_li[dof1-1]+=form[0]

uvl_li[dof2-1]+=form[1]

uvl_li[dof3-1]+=form[2]

uvl_li[dof4-1]+=form[3]

print(uvl_li)

#final load vector
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final=[]

for i in range(len(uvl_li)):

final.append(uvl_li[i]+load_li[i]+comb2[i]+comb1[i])

print(final)

coltorem=[]

rowtorem=[]

for i in nodesandtypesupport:

if(i[1]=='f'):

coltorem.extend(asinode[i[0]])

rowtorem.extend(asinode[i[0]])

elif(i[1]=='h'):

coltorem.append(asinode[i[0]][0])

rowtorem.append(asinode[i[0]][0])

elif(i[1]=='r'):

coltorem.append(asinode[i[0]][0])

rowtorem.append(asinode[i[0]][0])

print(coltorem)

print(rowtorem)

aftuse=rowtorem

npglobstifmat=np.array(globstifmat)

onpglobstifmat=npglobstifmat

print(npglobstifmat)

print(npglobstifmat.shape)

#removing row

npglobstifmat=np.delete(npglobstifmat, rowtorem, 0)

print(npglobstifmat)

print(npglobstifmat.shape)

#removing column

npglobstifmat=np.delete(npglobstifmat, rowtorem, 1)

print(npglobstifmat)
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rednpglobstifmat=npglobstifmat

print(npglobstifmat.shape)

#mass matrix removing rows nd columns

npglobmassmat=np.array(globmassmat)

onpglobmassmat=npglobmassmat

print(npglobmassmat)

npglobmassmat=np.delete(npglobmassmat, rowtorem, 0)

print(npglobmassmat)

npglobmassmat=np.delete(npglobmassmat, rowtorem, 1)

print(npglobmassmat)

rednpglobmassmat=npglobmassmat

print(npglobmassmat.shape)

globloadvector=final

print(globloadvector)

#coverting to column vector

npglobloadvector=np.array(globloadvector)

orignpglobloadvector=npglobloadvector

print(npglobloadvector.shape)

#removing rows

npglobloadvector=np.delete(npglobloadvector, rowtorem, 0)

print(npglobloadvector)

#linear eqn solving

a = npglobstifmat

b = npglobloadvector

nodaldeflectionslope = np.linalg.solve(a, b)

print("nodal deflection in mm and slope in radians")

print(nodaldeflectionslope)

#changing dimension

xx=[]

zz=list(nodaldeflectionslope)

i=0
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s=set(rowtorem)

for j in range(noofnodes*2):

if(j not in s):

xx.append(nodaldeflectionslope[i])

i+=1

else:

xx.append(0)

print(xx)

file.write('nodal deflection in mm and slope in radians are ' + str(xx)+'\n')

#changing to col matrix

npnodaldeflectionslope=np.array(xx)

print(npnodaldeflectionslope.shape)

print('nodal deflection in mm and slope in radians')

print(npnodaldeflectionslope)

npglobstifmat=np.array(globstifmat)

npglobstifmat

x=np.dot(npglobstifmat,npnodaldeflectionslope)

print(x)

t1=list(x)

t2=list(orignpglobloadvector)

res=[]

for i in range(len(t1)):

res.append(t1[i]-t2[i])

print(res)

#reaction of support

y=x-orignpglobloadvector

reactionmat=y

print("shear force in N and Bending moment in N-mm")
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print(reactionmat)

j=0

aftuse=rowtorem

ind=0

for i in nodesandtypesupport:

if(i[1]=='f'):

print('reaction node at R'+str(i[0])+"X in N "+str(reactionmat[aftuse[ind]]))

file.write('reaction node at R'+str(i[0])+"X in N "+str(reactionmat[aftuse[ind]])+ '\n')

ind+=1;

print('reaction node at R'+str(i[0])+"Y in N "+str(reactionmat[aftuse[ind]]))

file.write('reaction node at R'+str(i[0])+"Y in N "+str(reactionmat[aftuse[ind]])+ '\n')

ind+=1

elif(i[1]=='r'):

print('reaction node at R'+str(i[0])+"Y in N "+str(reactionmat[aftuse[ind]]))

file.write('reaction node at R'+str(i[0])+"Y in N "+str(reactionmat[aftuse[ind]])+ '\n')

ind+=1

elif(i[1]=='h'):

print('reaction node at R'+str(i[0])+"Y in N "+str(reactionmat[aftuse[ind]]))

file.write('reaction node at R'+str(i[0])+"Y in N "+str(reactionmat[aftuse[ind]])+ '\n')

ind+=1

Modal Analysis of Beam: Calculating Natural frequencies and Mode Shapes

class Eigen(object):

def _init_(self, *args, **kwargs):

return super()._init_(*args, **kwargs)

def Rescale(self, x):

max = x.max()

min = x.min()

s = x.shape
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n = s[0]

amax = max

if abs(min) > max: amax = abs(min)

for i in range(n):

x[i] = x[i] / max

return x

def RescaleEigenVectors(self, evec):

dims = evec.shape

ndofs = dims[0]

for i in range(ndofs):

evec[:,i] = self.Rescale(evec[:,i])

return evec

def GetOrthogonalVector(self, ndofs, trial, mg, ev,evec):

const = 0

s = [ndofs]

sumcu= np.zeros(s)

for e in range(ev ):

U = evec[:,e]

const += trial @ mg @ U

cu = [x * const for x in U]

sumcu += cu

trial = trial - sumcu

return trial

def Solve(self,kg, mg, tolerance = 0.00001 ):

dims = kg.shape

ndofs = dims[0]

s = (ndofs,ndofs)

evec = np.zeros(s)

s = (ndofs)
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eval = np.zeros(ndofs)

trial = np.ones(ndofs)

eigenvalue0 = 0

for ev in range(ndofs):

print("Computing eigenvalue and eigen vector " + str(ev) + "... " , end="")

converged = False

uk_1 = trial

k = 0

while converged == False:

k += 1

if ev > 0:

uk_1 = self.GetOrthogonalVector(ndofs,uk_1,mg,ev,evec)

vk_1 = mg @ uk_1

uhatk = np.linalg.solve(kg,vk_1)

vhatk = mg @ uhatk

uhatkt = np.transpose(uhatk)

eigenvalue = (uhatkt @ vk_1)/(uhatkt @ vhatk)

denominator = math.sqrt(uhatkt @ vhatk)

uk = uhatk/denominator

tol = abs((eigenvalue - eigenvalue0) / eigenvalue)

if tol <= tolerance:

converged = True

evec[:,ev] = uk

eval[ev] = eigenvalue

print("Eigenvalue = " + str(eigenvalue))

print('no of iterations= ',k)

else:

eigenvalue0 = eigenvalue

uk_1 = uk
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if k > 1000:

evec[:,ev] = uk

eval[ev] = eigenvalue

print ("could not converge. Tolerance = " + str(tol))

break

self.eigenvalues = eval

return evec

# compute eigenvalues and eigen vectors

e = Eigen()

evec = e.Solve(rednpglobstifmat,rednpglobmassmat)

evect = e.RescaleEigenVectors(evec)

eval = e.eigenvalues

neval = len(eval)

print("eigen values")

eigvalues=e.eigenvalues

print(e.eigenvalues)

file.write("eigen values are "+str(eigvalues)+'\n')

print(len(e.eigenvalues))

print("eigen vectors")

print(len(evect))

print(evect)

for i in evect:

file.write("eigen vectors are "+str(list(i))+'\n')

from scipy.linalg import eigvalsh

ab=eigvalsh(rednpglobstifmat,rednpglobmassmat)

print(ab[0])

f1=np.sqrt(ab[0])

f1

f2=np.sqrt(ab[0])

f2=f2/(2*3.14)
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f2

#frequency

freq=[]

for i in eigvalues:

freq.append(math.sqrt(i)/(2*3.14))

print("natural frequency in hertz",freq)

file.write("natural frequency in hertz "+str(freq)+ '\n')

import matplotlib.pyplot as plt

z=1

for i in evect:

time = np.array(i)

amplitude = np.sin(time)

plot.plot(time, amplitude)

plot.title('mode'+str(z))

plot.xlabel('vector')

plot.ylabel('sin(vector)')

plot.grid(True, which='both')

plot.axhline(y=0, color='k')

plot.savefig(r"D:\Remo desktop\PhD work\project 2022\mode"+str(z)+'.png',

bbox_inches='tight')

plot.show()

plot.show()

z+=1
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Beam to be executed in Python

Fig.3.22 Beam to be analyzed using Python code

ELEMENT CONNECTIVITY TABLE

ELEMENT NO. NODE 1 NODE 2

1 1 2

2 2 3

3 3 4

4 4 5

5 5 6

6 6 7

7 7 8

8 8 9

Table 3.7 Element connectivity table for beam analyzed using Python
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3.2.1 Input given for python code
Length of the beam : 8000 mm

Young’s modulus : 200000 N/mm3

Inertia : 4000000 mm4

Area of cross-section : 6927.23 mm2

Density of element : 0.008 g/mm3

No. Of elements : 8

UDL value for 1-4 elements : 12 N/mm

UDL value for 5-8 elements : 24 N/mm

No. Of supports : 3

Type of support at node 1 : Fixed

Type of support at node 5: Roller

Type of support at node 9: Roller

3.2.2 Output from python code

the total number of elements= 8

the total number of nodes= 9

coordinates for node1in mm : [0, 0]

coordinates for node2in mm : [1000.0, 0.0]

coordinates for node3in mm : [2000.0, 0.0]

coordinates for node4in mm : [3000.0, 0.0]

coordinates for node5in mm : [4000.0, 0.0]

coordinates for node6in mm : [5000.0, 0.0]

coordinates for node7in mm : [6000.0, 0.0]

coordinates for node8in mm : [7000.0, 0.0]

coordinates for node9in mm : [8000.0, 0.0]

modulus of elasticity in N/mm-square= 200000.0

the start node and end node for element 1 :[1, 2]

the start node and end node for element 2 :[2, 3]

the start node and end node for element 3 :[3, 4]
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the start node and end node for element 4 :[4, 5]

the start node and end node for element 5 :[5, 6]

the start node and end node for element 6 :[6, 7]

the start node and end node for element 7 :[7, 8]

the start node and end node for element 8 :[8, 9]

the total number of nodes having supports 3

the node number having support is 1 type of support is f

the node number having support is 5 type of support is r

the node number having support is 9 type of support is r

nodal deflection in mm and slope in radians are [0, 0, -1.3392857142857035, -

0.0003571428571428396, 1.4285714285714557, 0.0057142857142857256, 7.232142857142884,

0.003214285714285701, 0, -0.022857142857142895, -33.75000000000004, -

0.0353571428571429, -57.14285714285722, -0.00714285714285715, -44.464285714285765,

0.03178571428571433, 0, 0.05142857142857148]

reaction node at R1X in N 17142.857142857123

reaction node at R1Y in N 6857142.857142834

reaction node at R5Y in N 87428.57142857145

reaction node at R9Y in N 39428.57142857148

eigen values are [0.00725779 0.02178356 0.0685719 0.01522055 0.01029292 0.00836923

0.00757259 0.00787322 0.00751117 0.00738306 0.00732841 0.00736993

0.00732448 0.007359 ]

eigen vectors are [0.41445573593735274, -727.5601283713471, -0.02173815532887317,

0.06830778956473842, -2.918701741735896, 0.05523551305301973, -0.08193926493635977,

0.18976122940042878, 0.29984473778387644, 0.34622500643726845, -0.12777378883341506,

0.3519255393812662, -0.12899995555355395, -0.1194393684022216]
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eigen vectors are [0.0006585308894527483, -1.0565433709564918, 0.0001680432209850511,

1.81420567550139e-05, -0.0036082484736192854, 0.00022752977364182863, -

0.000145976281234507, 0.0003884031698490004, 0.0005220609260106166,

0.0005787256590650591, -0.00020990701591274696, 0.0005856490590289405, -

0.00021159845885560067, -0.000198036620888728]

eigen vectors are [1.0, -1447.2001688630303, 0.4666129676553466, -0.08180028194500041, -

3.8234860493556306, 0.5361907289397004, -0.24385377332910455, 0.7109269980571082,

0.8574961052713916, 0.9198747364074458, -0.32872097235084746, 0.9274683722413606, -

0.33094321166919327, -0.31266181442697777]

eigen vectors are [0.0003761121905018182, -0.16349776967416552, 0.0006820955254143652, -

0.0002939416745326104, 0.002574604444149564, 0.0006620407872419246, -

0.0001453164177559864, 0.0005599832860413701, 0.0004789454574453561,

0.0004452358373665161, -0.00014774301709449765, 0.00044104198629622046, -

0.00014774304576565115, -0.0001464562828335143]

eigen vectors are [0.9699998561923173, -961.9142164924119, 0.8448784305507451, -

0.32446538738113445, 1.0, 1.0, -0.2937752894095101, 1.0, 1.0, 1.0, -0.34519170760076306, 1.0,

-0.34648463690672654, -0.33476647730137626]

eigen vectors are [-0.0004905290098510929, 1.0, -0.00018066572807887238, -

5.631360722150974e-05, 0.005023490397584205, -6.057897116548884e-06,

8.734440725345193e-05, -0.00017609463222872796, -0.00032439529544711735, -

0.0003884788830530746, 0.00014571409538450395, -0.0003961680146981308,

0.00014725584461919574, 0.0001348428581632132]

eigen vectors are [-0.0014222253857468724, 0.5511543886508126, -0.0013205593581225275,

0.0007425566966816885, -0.01080604698367122, -0.0022103099387580337,

0.0005247733466420562, -0.0019684267983010512, -0.0017470771240982114, -

0.0016497232372897873, 0.0005516170814733838, -0.0016382364556770342,

0.0005522084887537334, 0.0005450847747384799]
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eigen vectors are [-1.5574730312674263, -65.43935245638593, -0.9274373697524942,

0.841484061269176, -19.262784752853047, -2.8381780417329687, 0.6331329173009832, -

2.459961341892664, -2.0923427608900074, -1.9272931653249363, 0.6346111134633659, -

1.9081957640077036, 0.6345623072866547, 0.6331911186246816]

eigen vectors are [-0.0014260102405674487, -0.4892168664288267, -5.315082103204132e-05,

0.0006459203391735085, -0.02252886926693689, -0.00273804253658901,

0.0006054615652517517, -0.002378675217238815, -0.0019992140448686843, -

0.0018244061002301206, 0.0005967564820816925, -0.0018046669500307213,

0.0005965186621537283, 0.0005982750078710261]

eigen vectors are [-2.4214053665139152, -590.7957835610205, 0.004924703112589671, 1.0, -

35.666261499987826, -4.4214208977453735, 1.0, -3.888060350722453, -3.3113840007875357, -

3.0438952880966474, 1.0, -3.013886295243407, 1.0, 1.0]

eigen vectors are [-0.00016078644828104678, -0.3884783976545204, 0.001523249806475169, -

0.00030462124462214495, -0.006583846138730444, -0.00016397803613634704,

6.51760032307528e-05, -0.00023066234896169214, -0.0002283305156601891, -

0.00021739663489323105, 7.184212962894666e-05, -0.00021721642187399359,

7.21646544395875e-05, 7.250878990162124e-05]

eigen vectors are [-1.7942177180776593, -622.9969887498738, 1.0, 0.48607893421830334, -

28.714615722174237, -3.155071604561017, 0.7355492429103335, -2.838307914035749, -

2.445340117899427, -2.256382088932153, 0.742284888206237, -2.2358929683483657,

0.7425593136183439, 0.7422879443638698]

eigen vectors are [0.0013564264001733326, 0.35262377123593436, 1.1890394057169294e-05, -

0.0005707893235929866, 0.02021176117191715, 0.0024990604204100718, -

0.0005628723418596965, 0.002192559905170224, 0.0018629150202141974,

0.0017102420374484502, -0.0005614344569881734, 0.001693089410969928, -

0.0005613946630236216, -0.0005616786196880239]
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eigen vectors are [0.002021299847320939, 0.7672876343606069, -0.0015745260854522088, -

0.000427977336201311, 0.03318252379908634, 0.0034849551502229934, -

0.0008242910554695968, 0.003168173603910115, 0.0027453672530228686,

0.0025386216777152372, -0.000835886521552246, 0.002516556238690057, -

0.0008363452087774558, -0.0008357127744434184]

natural frequency in hertz [0.013565710622506125, 0.023502000070651712,

0.04169783077574668, 0.019645159201469753, 0.016155098416523073,

0.014567439477518181, 0.01385678379202456, 0.014129169116553817,

0.013800478303801923, 0.013682279157822436, 0.013631549666467846,

0.013670108787534494, 0.01362789077396322, 0.01365996653517018]
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CHAPTER-4

EXPERIMENTAL RESULTS
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4.1 STRUCTURAL ANALYSIS RESULTS FROM

PYTHON

Table.4.1 Nodal deflections and nodal displacements

from Python code

REACTION FORCES(in N)

Table.4.2 Reaction forces from Python

code

REACTION MOMENT

(in N-mm)

Table.4.3 Reaction moment from

Python code

Distance (in
mm)

Node
Number

Deflection (in
mm)

Slope (in
Radians)

0 1 0 0
1000 2 -1.339285714 -0.000357143
2000 3 1.428571429 0.005714286
3000 4 7.232142857 0.003214286
4000 5 0 -0.022857143
5000 6 -33.75 -0.035357143
6000 7 -57.14285714 -0.007142857
7000 8 -44.46428571 0.031785714
8000 9 0 0.051428571

Node Force

1 17142

2 87428

3 39428

Node Moment

1 6851720
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Length of the beam(in mm)

Vs

Nodal slopes(in N-mm)

Fig.4.1 Graph plotted between Length of the beam-Nodal Slopes

from Python results

Length of the beam(in mm)

Vs

Nodal deflections(in mm)

Fig.4.2 Graph plotted between Length of the beam-Nodal deflections

from Python results
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4.2 MODAL ANALYSIS RESULTS FROM PYTHON

NATURAL FREQUENCY

(in Hertz)

Node Frequency(Hz)

1 0.013565710622506125

2 0.023502000070651712

3 0.04169783077574668

4 0.019645159201469753

5 0.016155098416523073

6 0.014567439477518181

7 0.01385678379202456

8 0.014129169116553817

9 0.013800478303801923

10 0.013682279157822436

11 0.013631549666467846

12 0.013670108787534494

13 0.01362789077396322

14 0.01365996653517018

Table.4.4 Natural frequency from Python code
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EIGEN VALES

Node Eigen value

1 0.00725779

2 0.02178356

3 0.0685719

4 0.01522055

5 0.01029292

6 0.00836923

7 0.00757259

8 0.00787322

9 0.00751117

10 0.00738306

11 0.00732841

12 0.00736993

13 0.00732448

14 0.007359

Table.4.5 Eigen values from Python code
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MODE SHAPES

Fig.4.3 Mode Shape 1 for corresponding frequency 1.

Fig.4.4 Mode Shape 2 for corresponding frequency 2.



83

Fig.4.5 Mode Shape 3 for corresponding frequency 3.

Fig.4.6 Mode Shape 4 for corresponding frequency 4.
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Fig.4.7 Mode Shape 5 for corresponding frequency 5.

Fig.4.8 Mode Shape 6 for corresponding frequency 6.
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Fig.4.9 Mode Shape 7 for corresponding frequency 7.

Fig.4.10 Mode Shape 8 for corresponding frequency 8.
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Fig.4.11 Mode Shape 9 for corresponding frequency 9.

Fig.4.12 Mode Shape 10 for corresponding frequency 10.
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Fig.4.13 Mode Shape 11 for corresponding frequency 11.

Fig.4.14 Mode Shape 12 for corresponding frequency 12.
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Fig.4.15 Mode Shape 13 for corresponding frequency 13.

Fig.4.16 Mode Shape 14 for corresponding frequency 14.
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CHAPTER-5

DISCUSSION OF RESULTS
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5.1 COMPARING ANSYS APDL RESULTS WITH

PYTHON RESULTS

NODAL DEFLECTIONS(in mm)

Table.5.1 Comparing results of Nodal deflections from

Python code to ANSYS APDL

NODE
ANSYS

APDL
PYTHON

1 0.00 0

2 -1.1242 -1.339285714

3 1.6806 1.428571429

4 7.3962 7.232142857

5 0.00 0

6 -32.608 -33.75

7 -55.526 -57.14285714

8 -43.187 -44.46428571

9 0.00 0
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Nodal Slopes(in N-mm)

Table.5.2 Comparing results of Nodal slopes from

Python code to ANSYS APDL

NODE
ANSYS

APDL
PYTHON

1 0.00 0

2 -0.0003378 -0.000357143

3 0.005808 0.005714286

4 0.003424 0.003214286

5 -0.022465 -0.022857143

6 -0.035129 -0.035357143

7 -0.0072174 -0.007142857

8 0.031292 0.031785714

9 0.05838 0.051428571
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Reaction forces(in N)

Table.5.3 Comparing results of Reaction forces from

Python code to ANSYS APDL

Reaction moment (in mm)

Table.5.4 Comparing result of Reaction moment from

Python code to ANSYS APDL

NODE
ANSYS

APDL
PYTHON

1 17186 17142

2 87282 87428

3 39532 39428

NODE
ANSYS

APDL
PYTHON

1 6613000 6851720
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NATURAL FREQUENCIES (in Hertz)

NODE ANSYS

APDL

PYTHON

1 0.015030 0.013565710622506125

2 0.027770 0.023502000070651712

3 0.044255 0.04169783077574668

4 0.020348 0.019645159201469753

5 0.0068072 0.016155098416523073

6 0.0010517 0.014567439477518181

7 0.071635 0.01385678379202456

8 0.084450 0.014129169116553817

9 0.089786 0.013800478303801923

Table.5.5 Comparing Natural frequencies from Python code to ANSYS APDL

Here, in ANSYS the constant value C( eg. WLe3/3EI, 5WLe4/384EI …) varies according

to the type of beam and type of supports.

Where as in our Python code the value of C will be taken automatically according to the

material property of the beam.

So, few natural frequencies values will vary while comparing.
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CONCLUSION

From the present investigation, it can be concluded that the results obtained by running

python code were almost matched with the results obtained from ANSYS APDL software.

The current project investigated structural analysis of a continuous beam using Python

code and results obtained are exceptional.

The python code which we developed is suitable for all types of beams includes cantilever

beam,simply supported beam,Continuous beam,Fixed beam,Over hanging beam, with any

material, for any type of loads including Point load,Point couple / Moment load,Uniformly

varying load (Triangle,Trapezium),Uniformly distributed load .

Any type of cross section like Square,Rectangle,T- Section, L - Section,

C- Section,Straight beam, Curved, Tapered,Pipe sections,according to moment of inertia.

The code which we developed is used for automation for conducting structural analysis.

If for different materials this same experiment has to run, then the entire preprocessing

process has to be changed and re-run the analysis. If in another case the truss structure was

different or number of elements used are different, then the entire modeling work and then

the pre & post works has to be carried out newly while using ANSYS APDL Software.

With this Python code, the mentioned challenges can be solved very easily and at high

speeds.

In future it can be upgraded to work for all structural members like trusses, columns etc. .

Also we can implement in composite materials also.
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