






i 
 

ACKNOWLEDGEMENT 

 

I express immensely my deep sense of gratitude to Mr. D.S.S. Ravi Kiran, Assistant 

professor, Department of Mechanical Engineering, Anil Neerukonda Institute of Technology 

and Sciences, Sangivalasa, Visakhapatnam, for his valuable guidance and encouragement at 

every stage of the work made it a successful fulfilment. 

We express our sincere thanks to Mr. R.D.V. PRASAD, Assistant Professor, Department of 

Mechanical Engineering, Anil Neerukonda Institute of Technology & Sciences for his 

valuable suggestions throughout the project.  

Also we are very thankful to Prof. K. Rama Krishna, Principal, ANITS, Dr.B.NagaRaju, 

Head of the Department, Mechanical Engineering, ANITS, Visakhapatnam.  

We immensely express our deep sense of gratitude to the management and technical staff of 

Gayatri Vidya Parishad College of Engineering for providing assistance in carrying out 

the experiment work. 

We express our sincere thanks to the members of Teaching and Non-Teaching staff of the 

Department of Mechanical Engineering, ANITS, for their co-operation and support to carry 

on work.  

Last but not the least, we like to convey our thanks to all who have contributed directly or 

indirectly for the completion of this project work. 

 

Sumit Kumar Mondal   319126520048 

Salapu Narasimha Aneesh Naidu  319126520041 

Vedullavalasa Madhu Abhinav  319126520058 

Munjeti Yogeshwara Rao   319126520030 

Rakoti Kesava Chandra Sai Kiran  319126520039 



ii 
 

ABSTRACT 
 

In recent trends of manufacturing lower lead times and increase demand for good quality 

parts require the industry to produce the parts manufactured sustainably with high precision, 

low cost and improve productivity using novel techniques which are economical and Eco- 

Friendly. In most of the industries they use flooded machining where more cutting fluids are 

wasted. Even the cutting fluids are affecting the workers. Because in industries toxic cutting 

fluids are being used. 

The current research work deals with the analysis of multi objective optimization of cutting 

process parameters of materials through the use of both Minimum Quantity Lubrication 

(MQL) condition using Response Surface Optimization and the prediction method used is 

Fuzzy logic Optimization. The cutting parameters considered are Speed, Feed and Depth of 

Cut. While the output parameters considered are MRR , Rt , Ra , Rq and Rz. The type of 

insert used is a Carbide (Solid Carbide) Single Point Turning tool (SPTT). While cutting 

fluid used in MQL is Vegetable Oil (Sesame oil) performed at 90, 180 ml/hrs. The 

experiments were designed using Taguchi’s L9 orthogonal array for conducting the 

experimentation. Analysis of variance is applied to identify the most significant cutting 

process parameters influencing surface roughness and MRR under MQL conditions. 

The prediction / forecasting of responses is a critical part and has high significance in any 

manufacturing industry. This regression analysis and fuzzy logic approach have been 

implemented for this purpose. Finally, the best possible combination of cutting parameters 

are obtained by performing optimization analysis using RSM. The Cutting speed – 

100.512(m/min) , Feed – 0.404(mm) , Depth of Cut – 0.9(mm) are found to be best possible 

combination in the selected range and this has been validated by a confirmation experiment. 
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CHAPTER 1 

INTRODUCTION 

The majority of engineering parts, such as gears, bearings, clutches, tools, screws, and nuts, 
require precise dimensions, shapes, and smooth surfaces to function properly. However, 
manufacturing processes like casting and forging often cannot achieve the required accuracy 
and finish. Therefore, pre-formed parts, known as blanks, must undergo semi-finishing and 
finishing through machining and grinding to achieve the necessary precision and 
smoothness. Grinding is essentially a type of machining process. 

1.1 Importance of Machining 

A critical step in creating high-quality components is machining, which involves 
progressively eliminating superfluous material from prepared blanks in the form of crisps 
using cutting tools to reach the necessary dimensions and surface qualities. This process is a 
precision machining operation that results in smooth and accurate surfaces, making it a 
fundamental process in the manufacturing industry. 

Machining involves cutting, shaping, and forming raw materials into their final shapes and 
sizes, resulting in parts, tools, and instruments that are used in various industries. Metals are 
typically formed through machining, but other materials such as plastics, wood, ceramics 
and composites can also be machined. To carry out this process, workshops use advanced 
tools and equipment such as mills, lathes and drills that use various techniques to cut and 
shape the material. 3D printers are also used to add material to components. The machining 
process requires a high level of technical knowledge, expertise and attention to detail to 
produce parts and components with the required specifications. 

1.1.1 Types of Machining Operations 

i. Conventional Machining Process 

The conventional machining process refers to the use of traditional methods for 
machining, without employing any advanced techniques. The classic machining method 
is another name for it. The traditional machining techniques are described here. 

 Drilling Operation 

Drilling operations refer to the process of creating a hole or wellbore in the ground for the 
extraction of natural resources such as oil, gas, or water. This process involves the use of 
specialized equipment, including drill bits, drilling rigs, and pumps. The operation begins 
with the preparation of the drilling site and the assembly of the drilling rig. When 
machining with a single-point cutting tool vs drilling, the MRR (material removal rate) 
for drilling is quite high. as shown in Fig 1.1. 
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Fig 1.1 Drilling operation 

 Boring operation 

Boring is a machining technique that employs a specialized cutting tool, akin to a 
drill bit, to enhance the accuracy of an existing hole in a workpiece. This method 
involves the removal of material from the internal part of the workpiece. Boring is 
a versatile technique that can produce holes of varying sizes and degrees of 
precision. For achieving high levels of accuracy in the size and position of large-
diameter holes, boring is often the sole viable machining option available.as shown 
in Fig 1.2.  

 
Fig 1.2 Boring operation on a workpiece 

 Milling Operation 
The process of milling involves the use of revolving cutters that can pierce the work 
material. You can cut grooves in the material of the workpiece by milling. The workpiece 
is subjected to the feed motion during the machining process, while the tool rotates 
primarily. In some circumstances, the rotating tool may execute the primary and feed 
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motions concurrently while the workpiece remains in place, as shown in Figure 1.3. 
Common machine tools for milling include milling machines, such as horizontal, vertical, 
and gantry mills. They can be traditional or CNC machines, and the cutting tool is a 
spinning milling cutter. 

 

Fig 1.3 Milling Operation 

 Turning Operation 
It is a lathe operation that is used to remove material from the surface of the workpiece in 
order to decrease the diameter of the workpiece to the required value. This is referred to 
as turning. 

ii. Unconventional Machining Process 

Unconventional machining processes are unique in that they do not involve direct contact 
between the tool and workpiece, making them distinct from conventional machining 
processes. These processes represent a more advanced approach to machining. 

 USM (Ultrasonic Machining) 
Ultrasonic machining is an unconventional method of removing material from a surface 
by vibrating an instrument against it at high frequency and low amplitude while also 
utilising small abrasive particles. Both conductive and non-conductive materials, even 
those that cannot be machined using traditional techniques, can be processed using it. This 
method is very helpful when cutting fragile materials. The schematic diagram for 
ultrasonic machining is shown in Fig. 1.4. 
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Fig 1.4 Ultrasonic Machining 

 Electrical Discharge Machining Process 

The Spark Machining technique is another name for this procedure. This method removes 
material off the surface of the workpiece by local melting or vaporisation, as illustrated in 
Fig. 1.5, by sparking the tool and the workpiece, which are both submerged in a dielectric 
liquid. 

 

Fig 1.5 Schematic diagram of Electrical Discharge Machining  

1.2 Turning Operation 

As seen in Fig. 1.6, turning is a type of machining in which material is removed from a 
spinning workpiece to generate a cylindrical shape using a cutting tool, often a single-point 
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cutting tool. From straightforward shafts to intricate pieces utilised in the aerospace, 
automotive, and other sectors, turning activities are crucial in the manufacturing sector.  

 

Fig 1.6 Turning operation 

Turning is a machining process that can be performed manually using a traditional lathe that 
requires constant operator supervision. Alternatively, an automated lathe may be used, called 
a CNC lathe, which requires no operator intervention. Objects that are turned are called 
"turned parts" or "machined objects." This process can be used to machine cylindrical, 
conical, face, grooved and threaded surfaces with rotating surfaces. 
 
To generate accurate diameters and depths, turning involves rotating the workpiece while a 
cutting tool is moved along one, two, or three axes of motion. Turning's primary goal is to 
reduce the workpiece's diameter to the appropriate size. Turning can be used to create tubular 
components with different geometries on either the interior or outside of the cylinder. The 
lathe's centre has to be positioned for the workpiece's diameter to be the same at both ends. 
In order to turn, the diameter must be trimmed in two stages: roughing and finishing. 

1.2.1 Types of Turning Operation 

There are different types of turning, such as straight turning, taper turning, profiling, or 
external grooving. Generally, single-edged tools are used for turning. Let us discuss the 
types of turning operations. 

 Plain Turning 
In plain turning, the surface of a cylindrical workpiece is machined to remove excess 
material. The workpiece is held in a chuck or between centers, and the tool is driven 
longitudinally by hand or with a motor. 

 Step Turning 
Step turning is a type of turning operation in which a series of steps of different diameters 
are created on a workpiece, resulting in a final product that resembles a step as shown in 
Fig 1.7 
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Fig 1.7 Step Turning Operation 

 Taper Turning 
Taper turning is a machining operation in which the diameter of a cylindrical workpiece 
is gradually reduced from one end to the other. This can be accomplished by using a 
compound slide, a taper turning attachment, or by offsetting the tailstock on a lathe as 
shown in Fig 1.8. 

 

Fig 1.8 Taper Turning 

 Chamfer Turning 
Chamfering is a machining process in which the end of a workpiece is bevelled, similar 
to step turning. This process is essential after threading to allow the nut to slide freely over 
the threaded workpiece. In addition, chamfering removes sharp edges, which significantly 
reduces the risk of cutting, as depicted in Figure 1.9. 
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Fig 1.9 Chamfer turning operation 

 Contour Turning 
In a particular type of turning operation, the cutting tool follows a predetermined axial 
path geometry to produce specific contours on a workpiece. Contouring tools must make 
multiple passes to achieve the desired shape on the workpiece. However, it is possible to 
create the same contour shape in a single pass by using shaping tools, as 
illustrated in Figure 1.10. 

 

Fig 1.10 Contour Turning Operation 

 Spherical Generation 
Spherical generation is a process for producing a finished surface by rotating a mould 
about a fixed axis of rotation. This process requires the use of a hydraulic copying device 
and a mould on a CNC lathe. 
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 Hard Turning 
The term "hard turning" refers to the process of turning materials with a Rockwell 
hardness greater than 45, typically after the workpiece has undergone heat treatment. The 
primary purpose of this process is to replace conventional grinding operations. Hard 
turning outperforms rough grinding in terms of stock removal alone. However, grinding 
is preferred for finishing where form and dimensions are critical. 

 Eccentric Turning 
Eccentric turning is a machining process that involves two axes of rotation, where one 
axis is offset from the other. To perform this operation, three sets of centre holes are drilled. 
The workpiece can then be held at these three centres to perform a machining operation 
on each surface. 

1.2.2 Dynamics of Turning Operation 

 Forces 
The design of machine tools for turning operations relies heavily on the consideration of 
relative forces that can be absorbed by the machine without leading to notable deflections, 
vibrations, or chatter. Specifically, the three primary forces to be mindful of 
during turning are: 

i. Cutting or tangential force: The forces exerted on the tooltip during a 
cutting operation are directed downwards, resulting in an upward deflection 
of the workpiece. These forces play a vital role in providing the necessary 
energy for the cutting process. 

ii. Axial or feed force: The longitudinal force, also known as the feed force, 
acts in the direction of the feed of the equipment and causes the tool to move 
away from the lathe chuck 

iii. Radial or thrust force: It acts in a radial direction and pushes the tool away 
from the workpiece. 

 Speed  
When it comes to turning operations, the appropriate cutting speed is determined by 
various factors such as the material of the cutter and workpiece, the hardness of the setup, 
the rigidity of the machine tool and spindle power, the chosen coolant, among others. 

 Feed 
The feed in a turning operation refers to the distance that the tool travels through the 
material in a single revolution and is typically measured in millimeters per 
revolution (mm/rev). 

1.2.3 Cutting parameters 

 Cutting Feed 
In the context of turning operations, cutting feed refers to the distance that either the 
cutting tool or the workpiece travels during a single revolution of the spindle. This 
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measurement is usually expressed in inches per revolution (IPR) and corresponds to the 
feed per tooth for a multi-tip tool, which is measured in inches per tooth (IPT). 

 Cutting Speed 
Cutting speed during turning is expressed in feet per minute (SFM) and indicates the speed 
at which the workpiece surface moves relative to the edges of the cutting tool. 

 Spindle Speed 
The spindle speed in a turning operation is the number of revolutions per minute (RPM) 
at which the spindle and workpiece rotate. It is determined by dividing the cutting speed 
by the circumference of the workpiece. 

 Feed Rate 
The speed at which the cutting tool moves in relation to the workpiece during a cutting 
operation is known as the cutting speed and is expressed in inches per minute (IPM). 

 Axial Depth of Cut 
In a facing operation, the depth of the tool along the workpiece axis during cutting is 
referred to as axial depth of cut. A higher axial depth of cut will necessitate a reduction in 
the feed rate to avoid increasing the tool load and reducing the tool's lifespan. 

 Radial Depth of Cut 
During a turning or boring operation, the depth of the tool changes as it moves across the 
radius of the workpiece. When dealing with large radial depths, it is crucial to employ a 
low feed rate to prevent excessive tool load, which can lead to reduced tool life. 

1.2.4 Advantages of the turning process 

 Every substance may be used in another. 

 There is tremendous tolerance. 

 The lead time is brief. 

 A low-skilled operator is not necessary. 

 The rate of material removal may be changed.. 

 

1.3 Cutting Tools  

The purpose of a cutting tool is to shear off extra layers of material from a workpiece during 
machining in order to give it the correct form, size, and precision. It depends on different 
mechanical and other arrangements to provide the relative velocity between the workpiece 
and the cutting tool required for the cutting operation. It is securely attached to the machine 
tool. 
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1.3.1 Role of cutting tool 
A cutting tool is a wedge-shaped object with sharp edges that is used to remove extra 
material from a workpiece in order to shape and size it to the appropriate dimensions. The 
cutting tool is fixedly attached to the machine tool and moves rather quickly to perform 
the cutting operation. 

Metal cutting tools are utilized in the manufacturing process of metal components for 
machines. The process involves selective removal of metal to create the desired shape, 
ranging from simple to complex pieces of varying sizes. With the advancements in 
technology, metal cutting tools have evolved to be used on computerized numerical 
control (CNC) machines, which offer high precision and can produce complex parts of 
different shapes and sizes. Various techniques are used to remove unwanted metal, 
including single and multiple edge cutting tools, electrical discharge machining, and 
abrasive cutting using grinding methods. 

1.3.2 Types of Cutting tool 

The cutting process may vary depending on the conditions under which it is performed, 
and the cutting tool used may require unique properties in addition to meeting general 
requirements. The choice of material for a particular application is determined by factors 
such as the material to be machined, the type of machining, and the quality and quantity 
of production required. 

i. Various types of tool bits 

 High carbon steel cutting tool  

In the beginning, tool bits were typically manufactured using high carbon steel that was 
correctly hardened and tempered. This type of steel contained small amounts of silicon, 
chromium, manganese, and vanadium, which helped to refine the grain size and carbon 
content to between 0.6% to 1.5%. The maximum hardness that could be achieved with 
this material was approximately HRC 62. However, it had low wear resistance and hot 
hardness. Figure 1.11 illustrates a high carbon steel tool bit.  

 

Fig 1.11 High carbon steel tool bits  
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 High-Speed Steel (HSS) cutting tool 

This is another high carbon steel featuring a significant quantity of alloys like chromium 
and tungsten to increase their hardness and wear resistance. HSS loses its hardness when 
temperatures hit 650 °C. It is, therefore, advisable to use coolants to increase tool life .Fig 
1.12 shows various tool bits of HSS material. 

 

Fig 1.12 HSS tool bits 

 Cemented Carbide and Cement 

The cemented carbide cutting tool is created using metallurgy method. It is made from 
tungsten, titanium carbide and tantalum with cobalt as a binder. The most notable thing 
about the cemented carbide tools is that they are very hard and can be used for cutting at 
high speed and temperatures as shown in Fig 1.13. For example, you can use them for 
cutting at temperatures of 1000 °C without losing their properties. 

 

Fig 1.13 Cemented carbide and cemented tool bits 
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 Ceramics 

The common ceramic materials used in cutting tools are silicon nitride and aluminium 
oxide. When the ceramic material powder is compacted and inserted at very high 
temperatures, the resulting tools are inert and resistant to corrosion. Therefore, they have 
high compressive strength. Fig 1.14 depicts ceramic glass drill bit.  The ceramics are stable 
when operating even in temperatures of up to 1800°C and are about 10 times faster than 
HSS. 

 

Fig 1.14 Ceramic glass drill bit 

 

 Cubic Boron Nitride (CBN) 

CBN is the second hardest material and is commonly used in hand machines. They provide 
high abrasion resistance and utilize abrasive in grinding wheels. They are ideal at speeds 
of 600-800m/min. Fig 1.15 shows the Cubic Boron Nitride tool bit 

 

Fig 1.15 Cubic Boron Nitride tool bit 

 Diamond 

This is the hardest material used in tools. It features a high melting point and thermal 
conductivity. Therefore, it provides excellent abrasion resistance, low thermal expansion, 
and low friction coefficient. It is considered ideal for machining hard materials like glass, 
nitrides, and carbides. Fig 1.16 depicts diamond drill bit. 
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Fig 1.16 Diamond drill bit 

ii. Classification of Cutting Tools 

One or more projecting cutting edges that take part in simultaneous cutting in a single pass 
might make up a cutting tool. The category of the cutting tool is: 
 Single Points Cutting Tool 
A cutting tool with only one primary cutting edge that can remove material in a single 
pass is referred to as a single-point cutting tool. Typical machining processes involving 
this tool include turning, shaping, and planing. Usually, it is constructed of strong 
materials like high-speed steel, high-carbon steel, ceramic, or diamond. There is a larger 
chance that the cutting edge will break since there is only one cutting edge engaged in the 
cutting process, which can result in a relatively sluggish rate of material removal. A single 
point cutting tool's appearance is depicted in Fig. 1.17. 

 

Fig 1.17 Single point cutting tool 
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 Double Point Cutting Tool 

While single-edged tools only have one main cutting edge, double point cutting tools 
feature two cutting edges that can cut and shear concurrently in a single action. On the 
other hand, multi-edged tools have more than two cutting blades and may complete many 
machining operations in one pass. Even though certain cutters are split into two categories, 
double-tip cutters are also referred to as multi-tip cutters. Figure 1.18 illustrates how a 
rake face and a flank come together to form cutting edges. 

 

Fig 1.18 Double point cutting tool 

 Multi-Point Cutting Tools 

A cutting tool with several main cutting edges working together in a single operation is 
called a multiple cutting tool. Some refer to a cutting tool with two cutting edges as a 
multiple cutting tool rather than a double cutting tool. The number of cutting edges in a 
multi-point tool can range from three to several hundred. Unlike a single point tool, a 
multi-point tool allows multiple cutting edges to be used simultaneously, resulting in more 
efficient material removal. This is shown in Fig. 1.19. 

 

Fig 1.19 Multi point cutting tool 
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1.3.3 Single Point Cutting Tool Geometry 

There are various components in the cutting tool geometry  

1. Shank  

2. Flank  

3. Face 3/6 single-point cutting tool  

4. Heel  

5. Nose  

6. Nose radius  

7. Cutting Edges 

 Angle: 

1. Side Cutting edge angle  

2. End cutting edge angle  

3. Side relief angle  

4. End relief angle  

5. Back Rack angle  

6. Side rack angle 

 Here you can see in the Fig1.20:  

 

Fig 1.20 Single point cutting tool geometry 

1. The shank: The tool's primary body is the shank. The tool (i.e., the tool holder) is held 
by the shank. 

2. Flank: The flank of the tool is the area below and next to the cutting edge. 

3. Face: The tool's face is the area where the chips roll over it. 

4. The heel : is the location where the tool's base and flank converge. It is a curved portion 
on the tool's base. 
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5. Nose: This location marks the intersection of the side and end cutting edges. 4/6 

6. Nose Radius: With a sharp tip on the nose, the nose radius offers extended life and a 
superb surface polish. 

7. Cutting Edge: This is the edge on the face of the tool that removes material from the 
workpiece. The tool cutting edge consists of a side cutting edge, an end cutting edge  

Angle: 
1. Side cutting edge angle: this angle is also called the lead angle. This is the angle 
between the side cutting edge The lead angle is another name for the side cutting edge 
angle. The angle formed by the side cutting edge and the tool shank is seen here. 

2. The angle between the end cutting edge and a line perpendicular to the tool shank is 
known as the end cutting edge angle. 

3. Side relief angle: This is the angular relationship between a line perpendicular to the 
tool's base and measured at right angles to the end flank, and the area of the side flank just 
below the side cutting edge. 

4. End relief angle: This is the arc formed by the end flank's part just under the end cutter 
and a line perpendicular to the tool's base that is measured at a right angle to the flank. 

5. Back rack angle: This is the angle measured in a plane perpendicular to the side cutting 
edge between the tool's face and a line parallel to the tool's base. 

6. Side rack angle: Measured in a plane perpendicular to the tool's base and the side cutter, 
this angle describes the angle formed between the tool's face and a line that is parallel to 
the tool's base.  

1.4 Cutting Fluids 

During machining or cutting operations, cutting fluids are liquids that are commonly applied. 
These operations can include milling, turning, drilling, and others. The primary purpose of 
cutting fluids is to remove the heat generated during metal cutting and other machining 
processes, and they can also serve as lubricants in certain cases. Cutting fluids are used to 
enhance cutting conditions and prolong the life of cutting tools. 

Purpose of cutting fluids  

• Temperature control: Cutting fluids are used to lessen the friction and heat that are 
produced between the cutting tool and the workpiece since high temperatures can shorten 
the tool's lifespan. 

• Lubricating: The use of cutting fluids reduces friction and cutting forces by lubricating 
both the cutting tool and the workpiece.  

• Cleaning the Machines: The removal of chips, particles, and debris that might possibly 
damage the surface finish is facilitated by the use of cutting fluids. 

• Avoid dangerous contamination 
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Properties of Cutting Fluid 

 High stability, 

 Good lubricating qualities 

 A high flash point  

 Strong heat absorption capacity 

 neutral characteristics. 

 It must be nontoxic and odourless. 

 Low viscosity; transparent 

1.4.1 Role of Cutting fluids 

Cooling lubricants are important fluids used in metalworking processes such as cutting, 
drilling, milling, and turning to achieve optimum performance and extend the life of the 
cutting tool and workpiece. Although commonly referred to as coolants or lubricants, 
metalworking fluids perform a variety of functions beyond simply cooling and lubricating. 
These fluids are used in machining to reduce the heat generated by the cutting process, 
which can deform the workpiece and damage the cutting tool. Cutting fluids also lubricate 
the tool and workpiece to minimize friction and wear of the cutting tool and workpiece. 
They also contribute to excellent surface finish and precise dimensional control. 
The composition of cooling lubricants varies depending on the machining operation and 
the materials involved. Typically, metalworking fluids are made by mixing water and oil 
with an emulsifier to force mixing. Synthetic fluids can be made by adding additional 
chemicals to improve their properties. Metalworking fluids are essential in metalworking 
and perform numerous functions beyond cooling and lubrication. They help minimize 
heat, reduce friction, improve surface finish and dimensional accuracy, and extend the life 
of cutting tools and workpieces. 

1.4.2 Types of cutting fluids 

 Neat oils 

Neat cutting oils are formulated from mineral oils blended with additives to improve their 
performance. They are supplied by the manufacturer without further dilution for use in 
cutting operations. These oils have excellent lubricating and cutting properties and help 
prevent corrosion, rust and wear on metal machinery and tools. Figure 1.21 shows an 
example of a pure cutting oil. 



18 
 

 

Fig 1.21 Neat Oil 

 Soluble oils 

Soluble cutting oils, also known as emulsifiable oils, are lubricants used in metalworking 
to reduce friction and heat during cutting, drilling and grinding. Soluble Cutting Oil is a 
coolant and lubricant specifically designed for metalworking and machining processes. It 
is available in various forms such as oils, oil-water emulsions, pastes, gels and mists and 
can be made from various raw materials such as petroleum distillates, vegetable oils, 
animal fats and others. Depending on the type of cutting fluid, it is called soluble cutting 
fluid or soluble cutting oil. An example of a soluble oil is shown in Fig. 1.22. 

 

Fig 1.18 Soluble oil 

 Semi-synthetic cutting fluids 

Semi-synthetic cutting oils are commonly used in machining operations such as turning, 
milling, and drilling. They offer several advantages over conventional mineral-based 
cutting fluids, including improved cooling and lubrication properties, better rust and 
corrosion protection, and longer tool life. The synthetic component of the oil provides 
better lubrication, reduces friction and wear, and improves the overall performance of the 
cutting fluid. The mineral oil component of the oil provides good cooling properties and 
helps to flush away chips and debris from the cutting zone. Fig 1.23 depicts an example 
of semi synthetic cutting fluids. 
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Fig 1.23 semi synthetic cutting fluids. 

 Synthetic cutting fluids 

Synthetic cutting oil is a type of cutting fluid that is formulated using synthetic base oils 
instead of mineral oils. Synthetic oils are chemically engineered to have specific 
properties such as high viscosity index, low volatility, and excellent lubricity. Synthetic 
cutting oils are commonly used in high-performance machining operations that require 
high-speed cutting, heavy-duty machining, and tight tolerances. They offer several 
advantages over conventional mineral-based cutting fluids, including improved thermal 
stability, better cooling and lubrication properties, and reduced environmental impact. 
Fig 1.24 shows an example of synthetic cutting fluids. 

 

Fig 1.24 Synthetic cutting fluids 

1.5 Minimum quantity lubrication (MQL) 

1.5.1 Introduction  

Minimum Quantity Lubrication (MQL) is a modern method of lubrication that reduces the 
amount of coolant or lubricant used in machining processes. MQL is a sustainable solution 
that promotes environmental responsibility by minimizing the amount of waste generated 
during the machining process. MQL is an innovative lubrication technique that uses a 
small amount of lubricant or coolant that is directed precisely to the cutting zone of the 
tool. This minimal amount of lubricant is sufficient to ensure efficient and reliable 
machining, while also reducing the amount of waste and costs associated with traditional 
flood lubrication methods. MQL systems can be used with a variety of cutting tools and 
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materials, including metals, plastics, and composites. The lubricant used in MQL can be 
either oil or water-based and is delivered to the cutting zone through a series of micro-
nozzles or atomizers Fig 1.25 depicts the schematic diagram of MQL process 

 

Fig 1.25 Schematic Diagram of MQL process 

1.5.2 Functions of MQL 

Minimum Quantity Lubrication (MQL) is a metalworking fluid system that provides a 
significant reduction in the amount of lubricant used during the machining process 
compared to conventional flood lubrication systems. Instead of using large quantities of 
lubricant, MQL uses only a few millilitres of lubricant per hour. The lubricant dosage is 
so precise that it is almost completely consumed during the process. This results in nearly 
dry workpieces and chips, which reduces health hazards caused by emissions of 
metalworking fluids on the skin and in the air breathed by employees. 

Compared to emulsion lubrication, which may result in considerable wastage due to 
evaporation and may pose health hazards, MQL is a safer and more environmentally 
friendly option. With MQL, there is no need for metalworking fluid maintenance, 
preparation, or disposal, and there is a decrease in the work required to clean the processed 
pieces. The chips produced during the MQL process are nearly dry, which makes them 
easy to recycle and reduces oil soiling. 

By using MQL, the cost-inflating factors of conventional flood lubrication can be 
eliminated. The reduction of metalworking fluid quantities used in MQL not only saves 
money, but also reduces the need for monitoring and maintenance. This makes the 
machining process more efficient, less hazardous, and more sustainable. 

1.5.3 Benefits of MQL 

 Efficient, environmentally friendly near-dry machining practises can lead to several 
types of cost savings and improvements in a manufacturing operation, as shown in 
Fig. 1.26. 
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 Significantly reduced fluid/lubricant consumption. 

 Safer cutting fluids and lubricants. 

 Fewer health hazards for employees. 

 Longer tool life. 

 Lower fluid disposal cost. 

 Faster machining speeds and feeds. 

 And a cleaner shop with reduced maintenance. 

 

Fig 1.26 Benefits of using MQL 

1.5.4 Over- and Under-lubrication: 

Insufficient grease in a machine component can lead to its rapid failure, while over-
greasing can also have adverse effects. It is crucial to keep in mind that lubricants occupy 
a specific volume. Too much grease can cause clogs, leading to additional maintenance 
and downtime. Over-greasing can also result in seal failure, as grease guns can generate 
high levels of pressure that may harm bearings. Additionally, excess pressure from the 
lubricant can cause grease to dry and crack, exacerbating the damage to bearings. 
Ultrasound readings can be used by technicians to determine the optimal amount 
of grease needed. 

1.6 MQL setups 

In an NDM/MQL system, aerosol can be introduced into the cutting zone through external 
nozzles installed in the machine area or internally through channels built into the tool. The 
choice between external and internal supply units depends on the specific machining 
operation being performed. Figure 1.27 illustrates different MQL supply systems. 
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Fig 1.27 MQL supply systems 

1.6.1 External supply unit  

The coolant reservoir or tank and one or more nozzles are linked by hoses to form the 
external supply system for MQL. This system includes adjustable air and coolant flow that 
may be put close to the machine to maximise supply. It is a portable, cost-effective solution 
for machining tasks including turning, milling, sawing, and grinding. For MQL with an 
external aerosol supply system, there are two choices. In the first option, the ejector nozzle 
receives oil and compressed air, and the aerosol develops right behind the nozzle. In the 
second scenario, MQL employs a standard nozzle similar to one seen in a flooded coolant 
delivery system. An external atomizer prepares the aerosol, which is then fed into the 
conventional nozzle, as shown in Fig 1.28. 

 

Fig 1.28 Principle of MQL with external supply unit 
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The use of multiple nozzles for MQL processing is illustrated in Fig. 1.29. The first nozzle 
injects cutting fluid to minimize friction between the tool and the workpiece, resulting in 
reduced flank wear. The second nozzle helps with the chip curve caused by the rebonding 
effect and cools the process. This removes the heat generated in the primary shear zone. 
The third nozzle ejects fluid to remove heat from the secondary shear zone at the rake 
face.   

 

Fig 1.29 Use of multiple nozzles for machining under MQL 

1.6.2 Internal supply unit 

The single-channel system and the dual-channel system are two different internal supply 
system types that are depicted in Fig. 1.30. The aerosol mixture is created outside the 
spindle and delivered through a single channel in the single-channel system. To create the 
aerosol directly in front of the tool, either as it leaves the spindle or while it is in the tool 
holder, air and oil are fed independently through the spindle or rotating union in the two-
channel system. 

 

Fig 1.30 MQL internal supply systems 
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Types of cutting fluids used in MQL  

 Nano Cutting Fluids 

Nano cutting fluids are a type of cutting fluid that contain nanoparticles, which are 
particles with sizes ranging from 1 to 100 nanometres. These nanoparticles can be made 
of various materials, such as ceramics, metals, and polymers, and are added to the cutting 
fluid to enhance its performance. Fig 1.31 shows various examples of nano cutting fluids 

 

Fig 1.31 Nano Cutting Fluids 

 Solid cutting fluids 

Solid cutting fluids, also known as dry cutting or near-dry machining, are a type of cutting 
fluid that come in a solid form, such as a wax or a powder. Unlike traditional liquid cutting 
fluids, solid cutting fluids do not require a coolant system to apply them during 
metalworking operations Fig 1.32 depicts an example of solid cutting fluid 

 

Fig 1.32 Solid cutting fluids 
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1.7 Importance of flowrate in MQL 

A minimal quantity of lubricant is applied to a cutting tool or workpiece during machining 
as part of a process known as minimum quantity lubrication (MQL). The quantity of 
lubricant delivered to the cutting tool or workpiece and, consequently, the efficacy of the 
lubrication, are both influenced by the lubricant's flow rate, which is a critical component of 
MQL. In MQL, the lubricant is delivered as a fine mist or droplets, with the size and 
frequency of the droplets depending on the flow rate. The droplets may be excessively big 
and not disperse uniformly throughout the cutting tool or workpiece if the flow rate is too 
low, resulting in insufficient lubrication and consequent tool wear or damage. On the other 
side, excessive lubrication may result in problems including chip blockage, poor cutting 
performance, and more frequent cleaning procedures if the flow rate is too high. Because of 
this, it's crucial to optimise the flow rate for the particular machining process, taking into 
consideration elements like cutting speed, tool shape, material qualities, and lubricant 
properties. By doing so, you may save waste and costs while improving lubrication and 
machining performance. 

1.8 MQL machine equipment 

1.8.1 Lathe Machine 

A lathe is a machine tool used to form a piece of material by rotating it against a cutting 
tool. The material is usually held in a chuck attached to a spindle. The spindle rotates the 
chuck and the material while the cutting tool is stationary or moves against the material to 
remove it. Lathes are used for a variety of machining operations, including turning, facing, 
drilling, boring and tapping 

Parts of Lathe Machine 

A lathe machine consists of several parts as shown in Fig 1.33 

 

Fig 1.33 Lathe Machine 
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 Bed: The bed is the base of the machine and serves as support for all other parts. 

 Headstock: The headstock contains the spindle and the gear for turning the spindle. 

 Tailstock: The tailstock is located at the opposite end of the lathe from the headstock 
and is used to support the other end of the material being machined. 

 Carriage: The slide holds the cutting tool and can be moved along the bed to make 
cuts on the material. 

 Chuck: The chuck holds the material being machined and rotates it against the cutting 
tool. 

 Cross slide: The cross slide moves the cutting tool perpendicular to the axis of the 
lathe, allowing facing and other operations. 

 Cross slide: The cross slide holds the cutting tool and can be switched to perform 
angular cuts. 

Working of a Lathe Machine 

The operation of a lathe includes the following steps The material to be machined is 
clamped in the chuck and the chuck is attached to the spindle The cutting tool is mounted 
on the slide or cross slide. The spindle is rotated through the headstock and the cutting 
tool is moved toward the material. The cutting tool removes material from the material 
and shapes it as desired. The cutting tool can be moved along the bed and cross slide to 
make cuts at various positions on the material. 

Applications of Lathe Machines 

Lathes are used for a broad range of machining operations and are commonly found in 
machine shops and manufacturing facilities. Some of the common applications of lathe 
machines include: 

 Turning: The process of removing material from the surface of a cylindrical workpiece 
to produce a desired shape. 

 Facing: The process of removing material from the face of a workpiece to produce a 
flat surface. 

 Drilling: The process of making holes in a workpiece with a rotary cutting tool. 

 Boring: The process of enlarging an existing hole in a workpiece. 

 Tapping: The process of tapping a cylindrical workpiece. 

 Taper Turning: The process of creating a conical shape on a workpiece. 

 Knurling: The process of creating a pattern of small, diamond-shaped impressions on 
the surface of a workpiece. 

1.8.2 Mist Spray 

Mist spray is a type of spray that produces a fine mist of liquid particles. It is commonly 
used for a variety of applications such as in cosmetics, agriculture, cooling systems, and 
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more. Mist sprays are typically produced through the use of specialized equipment such as 
misting nozzles or atomizers, which break down a liquid into tiny droplets that can be 
easily dispersed as shown in Fig 1.34. 

 

Fig 1.34 Mist Spray set up 

Working of Mist Spray 

Mist sprays work by atomizing a liquid into a fine mist that can be easily dispersed in the 
air. The liquid is typically fed through a nozzle or atomizer that uses pressure, ultrasonic 
vibrations, or other methods to break the liquid into tiny droplets. These droplets are then 
sprayed out of the nozzle and into the air, where they can be used for a variety of 
applications. 

i. Types of Mist Sprays: 

 Ultrasonic Mist Sprays 

These types of mist sprays use ultrasonic vibrations to create a fine mist of liquid particles. 
The vibrations break down the liquid into tiny droplets that are then dispersed into the air 
as shown in Fig 1.35 
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Fig 1.35 Ultrasonic Mist Sprays 

 Pressure Mist Sprays 

These types of mist sprays use pressure to create a fine mist of liquid particles. The liquid 
is fed through a nozzle that is designed to create a high-pressure environment, which 
breaks down the liquid into tiny droplets that are then sprayed into the air as shown in Fig 
1.36 

 

Fig 1.36 High pressure mist spray 

1.8.3 Air compressor 

An air compressor is a mechanical device that is used to compress air and store it in a tank 
for later use. Air compressors come in different sizes and types, ranging from small, 
portable units to large industrial-sized models. They are commonly used in various 
industries, including manufacturing, construction, automotive, and agriculture. Fig 1.37 
shows air compressor used during the experiment. 
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Fig 1.37 Air compressor overview 

Use of air compressor in MQL process 

 Minimum quantity lubrication (MQL) projects use air compressors to drive pneumatic 
systems that provide lubrication and cooling for machining processes. MQL is a 
method of lubricating and cooling metalworking processes using small amounts of oil 
and air. Compressed air from the compressor is used to atomize the oil into small 
droplets, which are then sprayed onto the cutting tool and workpiece. The air also helps 
cool the machining area and reduce the heat generated during the cutting process. 

 Air compressors are an essential part of MQL systems because they provide the 
pressure and flow necessary to atomize and deliver the oil to the cutting tool. They 
also help regulate the temperature in the machining area to prevent overheating and 
reduce the risk of damage to the workpiece or cutting tool. 

 

 

 

 

 

 

 

 

 

 

 



30 
 

CHAPTER 2 

LITERATURE SURVEY 

2.1 Literature review on MQL based experiments 

Harshit B. Kulkarni et.al (2019) [1] In order to evaluate the effects of minimal quantity 
lubrication (MQL) coolant supply to the traditional flood cooling approach when surface 
milling Al7075-T6 aerospace aluminium plates with an uncoated carbide tool, the study 
employed a complete factorial design with ANOVA-based analyses. The spindle speed, feed 
rate, and depth of cut were taken into consideration in the study. The outcomes demonstrated 
that, in terms of surface finish (Ra) and lowest temperature (T) values, the MQL technique 
performed better than dry milling and nanofluid MQL milling. Additionally, decreasing the 
temperature at the tool-interface without impacting milling performance was a benefit of 
adding nanoparticles to the coolant. 

Jinyang Xu et.al (2019) [2] Although minimal quantity lubrication (MQL) is frequently 
employed in the machining of metallic materials, little research has been done on how it 
affects the drilling characteristics of composite metal stacks. To close this gap, a research on 
the drilling of a composite titanium stack made up of sheets of Ti6Al4V and carbon/epoxy 
laminates T700/ FRD-YZR -03 was carried out. Using tungsten carbide twist drills, it looked 
at how MQL parameters impact drilling pressure, surface form, the severity of drilling flaws, 
geometric precision of drilling, and tool wear indicators. According to the study, MQL 
drilling enhanced the cut composite holes' surface morphology but had no impact on the 
pressure within the holes, the degree of delamination, the severity of drill wear, or the 
cylindricity defects inside the holes. 

E A Rahim et.al (2011) [3] In this article, it is suggested that during MQL machining, a little 
quantity of lubricant be added to the area where the tool and workpiece meet. The study 
looked at how palm oil and synthetic ester, two different MQL lubricants, affected drilling 
of Ti-6Al-4V. The findings revealed that dry machining had the shortest tool life, whereas 
MQL enhanced a number of measured responses, including temperature, thrust, and tool life. 
Because of its capacity to create a thin coating that permitted boundary lubrication 
throughout the machining process, palm oil was found to perform better than other oils. In 
terms of microhardness, surface roughness, and subsurface deformation, palm oil fared 
better than synthetic ester. 

E. A. Rahim et.al (2014) [4] The implications of typical mineral-based cutting fluids on the 
environment, worker health, and machining costs are mentioned by the authors. Alternatives 
like minimal quantity lubrication (MQL), cryogenic coolants, and dry machining have all 
showed promise, particularly in terms of prolonging cutting tool life. This study compared 
the effectiveness of a synthetic ester cutting fluid based on MQL to the dry technique in 
orthogonal cutting tests. The findings demonstrated that MQL was superior to dry cutting in 
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terms of lowering the machining process's cutting temperature, cutting force, tool-chip 
contact time, and chip thickness. 

O. Pereira et.al (2016) [5] In their study, the authors propose a more efficient machining 
method that combines cryogenic cooling and minimal amount lubrication. The findings 
show that this combination strategy extends tool life by over 50%, increases cutting speed 
by over 30%, and keeps or even enhances cutting forces and surface integrity. The 
combination of cryogenic and lubricating techniques was determined to establish a 
compromise between technical and environmental issues after a life cycle study was done to 
compare other options. Single-system solutions were found to fall short of being complete. 

Anuj Kumar Sharma et.al (2016) [6] The method of near-dry machining (NDM) or minimal 
quantity lubrication (MQL), which optimises the spraying of a compressed air-cutting 
material mixture instead of flood cooling, is covered in the article. The paper looks at a 
number of research investigations on the MQL approach, including the use of cutting fluids 
based on nanofluids, vegetable oils, and mineral oils for different machining operations. It 
describes the MQL technique's workings and assesses how it affects performance metrics. 
Experimental research has demonstrated that MQL delivers a surface finish that is 
comparable to wet machining and superior than dry machining. It is a desirable substitute 
for flux lubrication since it also lowers cutting forces, cutting zone temperature, tool wear, 
and friction coefficient. 

2.2 Literature review on turning processes 

E. Budak and E. Ozturk (2011) [7] said that due to the use of numerous cutting tools, parallel 
turning provides improved productivity. The security of the process is impacted by the 
dynamic interplay between the instruments, which requires analysis. This research models 
the kinetics and stability of simultaneous turning processes. The outcomes of the created 
stable models in the frequency and time domains exhibit fair accord. The possibility of 
enhanced stability as a result of dynamic tool contact producing an absorber effect on one 
another is one of the intriguing results. When the expected stability boundaries are compared 
to the experimental findings, a believable alignment is shown. 

Yousef Shokoohi et.al (2015) [8] The process of turning is crucial in metal cutting, and the 
heat produced during this process affects the quality of the final product and energy 
consumption. A study was conducted to examine the effectiveness of a new cooling 
technique that involved mixing water, vegetable oil, anti-bacterial agent, and scented 
essence. The findings indicated that this method resulted in significant improvements in 
machining parameters, operator health, and environmental concerns. This combined cooling 
technique has the potential to increase productivity by improving machining quality, 
reducing costs, and promoting environmental protection. 

Alakesh Manna and Sandeep Salodkar (2007) [9] The authors of the paper proposed a 
procedure for determining optimal machining conditions in a turning operation with the 
objective of minimizing production costs. They used the Taguchi method to optimize cutting 
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parameters and establish a mathematical model that relates to the surface roughness height 
Ra. The model helped to identify the most effective parameter for cost optimization and 
analyze the effects of different input constraints at the optimal point. The study provides 
useful graphical representations to understand and evaluate the influences of various 
parameters on production cost. 

2.3 Literature review on various optimization techniques  

Gilberto Miller Devós Ganga and Luiz Cesar Ribeiro Carpinetti (2011) [10] The authors of 
the paper propose a new model to predict supply chain performance by combining fuzzy 
logic and SCOR model metrics. The model is tested through a quantitative approach, and 
statistical analysis confirms the causal relationships. The use of fuzzy logic allows dealing 
with uncertainty and subjectivity in supply chain management. This paper introduces a 
valuable tool for supply chain performance management. 

H.D. Cheng and Huijuan Xu (2000) [11] The authors proposed a new method for adaptive 
direct fuzzy contrast enhancement that utilizes fuzzy entropy and fuzzy set theory. The 
objective of this method is to enhance image contrast by determining a criterion for 
measuring contrast and using it to perform enhancement. Unlike other enhancement 
methods, this method is directly applied to the image and adjusts the enhancement process 
based on the image's characteristics. The experimental results demonstrate that the proposed 
algorithm is successful in enhancing contrast while avoiding over-enhancement. This 
method presents a new avenue for future research in the fields of image processing, pattern 
recognition, and computer vision. 

Giovanni and Maria (1983) [12] The speaker explained that Response Surface Methodology 
(RSM) is a statistical approach that utilizes quantitative data obtained from experimental 
designs to establish and solve multivariate equations. These equations are then represented 
graphically as response surfaces, which illustrate how the test variables impact the response. 
By providing insight into the interrelationships among the variables and describing their 
combined effect on the response, RSM can assist product developers in comprehending 
ingredient interactions within the product. This understanding can aid in formulating the 
final product and in anticipating future cost and quality variations. 
 
Marcos Almeida Bezerra et.al (2008) [13] The paper discusses the use of response surface 
methodology (RSM) to optimize analytical methods. It compares various symmetric 
experimental designs such as three-stage factorial experimental designs, Box-Behnken 
experimental designs, central composite experimental designs, and Doehlert experimental 
designs and highlights their applications in analytical chemistry. The paper also discusses 
the use of desirability functions for multiple response optimization and the use of artificial 
neural networks for modelling. 
 
Shyam Narayan Pandey and Shahnawaz Alam (2015) [14] In their study, the authors focused 
on electrical discharge machining, an unconventional machining process used in various 
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industries to produce high-value parts. In particular, they investigated the effects of electrode 
material selection on the machining of difficult-to-machine materials with the aim of 
determining the most suitable material for machining stainless steel-202. To evaluate the 
performance of different materials, the study considered two important factors: Material 
removal rate and electrode wear rate. 
 
Ishwer Shivakoti et.al (2018) [15] In this article, the process parameters for turning stainless 
steel-202 were examined using parametric analysis and an ANFIS-based modelling strategy. 
They employed the Taguchi L16 DOE experimental design with feed rate, spindle speed, 
and depth of cut as their three turning parameters. Evaluation and analysis of the impacts of 
process parameters on performance was done for material removal rate (MRR) and surface 
roughness (Ra) performance. The answers were correctly predicted by the ANFIS-based 
model, and the outcomes were compared and confirmed. 
 
Gurudatt Ghadi and Dr. Shivakumar S (2016) [16] The goal of this study is to examine the 
stainless steel (SS 202) TIG welding parameters that are utilised to create pressure vessels 
and heat exchangers. A non-melting tungsten electrode is utilised in the tungsten arc welding 
(GTAW) method, which is often employed for a range of metals. Prioritising the welding 
input parameters and calculating the tensile strength, flexural strength, and BHN value are 
done using the complete factorial design approach. Tensile, flexural, and hardness tests are 
used to assess the weldments' qualitative qualities. 
 
G Vignesh et.al (2019) [17] The goal of this study was to determine the stainless steel sheet 
202's 0.8 mm forming limit during incremental single point sheet forming (SPIF). In the 
investigation, various process variables including spindle speed, feed rate, and vertical 
infeed were employed. Additionally, the study measured dislocation density and examined 
fractograms. Forming limit diagrams (FLDs) based on stress and strain were both produced. 
Additionally, the corrosion behaviour of specimens that were distorted and those that were 
not was examined. 
 
SCOPE FROM LITERATURE SURVEY 

From the following literature reviews we had come to know about following things: 

 MQL based operations helps in utilizing the lubricants in the most efficient manner 

 Turning processes showing the possibility of improved stability through dynamic 
tool contact hence reducing tool wear. So turning operation may give the best output. 

 Fuzzy logic optimization along with regression analysis and response surface 
optimization are best in determining the required output parameters. 
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CHAPTER 3 

MATERIALS AND METHODOLOGY 

3.1 Materials used in MQL experiment 

3.1.1 SS202  

The material selected for the research project is SS202 as our material as shown in Fig 
3.1. The properties and applications of the material are discussed below 

 

Fig 3.1 SS202 material 

Stainless steel 202 is a type of austenitic stainless steel that contains chromium, nickel, 
and manganese. It is a lower-cost alternative to other types of stainless steel such as 304 
or 316, but it is not as corrosion-resistant and has lower toughness and ductility. Stainless 
steel 202 is commonly used in appliances, kitchenware, and automotive parts.  

Stainless steel 202 is magnetic and has a higher yield strength compared to 304 stainless 
steel. It also has good formability and is relatively easy to weld, making it suitable for a 
variety of applications such as kitchenware, appliances, automotive parts, and 
architectural trim. 

However, due to its lower corrosion resistance, stainless steel 202 is not recommended for 
use in highly corrosive environments or applications exposed to high temperatures. In 
general, it is a versatile and cost-effective stainless-steel grade that can be a good option 
for certain applications where corrosion resistance is not the primary concern. 

Chemical Composition 

The chemical composition of grade 202 stainless steel is outlined in the following table 
3.1. 
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Table 3.1 Chemical Composition of SS202 

Element Content (%) 

Fe 68.1 

Cr 16.8-18.2 

Mn 7.5- 9.5 

Ni 4.1-6.6 

Si <1 

N <0.25 

C <0.15 

P <0.060 

S <0.030 

Table 3.2 Physical properties of SS202 

Properties Value 

Density 7.9 g/cm3 

Melting Point 1454°C (2650°F) 

Thermal Conductivity 16.3 W/m·K at 20°C (68°F) 

Electrical Resistivity 0.74 μΩ·cm at 20°C (68°F) 

Table 3.3 Mechanical Properties of SS202 

Properties Value 

Tensile Strength 520 MPa (75 ksi) 

Yield Strength 275 MPa (40 ksi) 

Elongation At Break 40% in 50 mm (2 in.) 

Thermal Expansion Coefficient (@20-100°C/68-212°F): 11.7 x 
10¯⁶ cm/cm⁰C (6.56 in./in./°F) 

Modulus Of Elasticity (@20°C/68°F): 193 GPa (28 x 10⁶ 
psi) 
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Applications 

 Equipment for restaurants. 

 Kitchen tools. 

 Sinks. 

 Trim for automobiles. 

 Architectural elements like doors and windows. 

 Train cars. 

 Trailers. 

3.1.2 Lathe (Cone Pulley)Pilot,6’,Png-2 

 

Fig 3.2 Lathe (Cone Pulley)Pilot,6’,Png-2 

Lathe machine used for doing this experiment is Lathe (Cone Pulley)Pilot,6’,Png-2 
shown in Fig 3.2. Table 3.3 shows specification of lathe . 

Table 3.3 specifications of Lathe (Cone Pulley)Pilot, 6', Png-2 

Maximum Swing Over Bed 250mm 

Power Source Electric 

Max Spindle Speed 1000 Rpm 

Max Turning Diameter 500 Mm 

Material Ms 

Voltage 220-440v 

Frequency 50-60 Hz 
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3.1.3 Mist Spray 

Mist spray used in our experiment is shown in Fig 3.3 

 

Fig 3.3 Mist Spray 

3.1.4 Cutting tool  

Cutting tools are essential for various machining operations, and there are many different 
types of cutting tools available for different applications. The choice of cutting tool 
depends on the material being machined, the desired shape and finish, and the cutting 
conditions. 

Cutting tool Used in our Project is CNMG 120404MS as shown in Fig 3.4 and Fig 3.5  
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Fig 3.5 CNMG 120404MS 

CNMG 120404MS is a specific type of cutting tool insert that is commonly used in turning 
operations. Here’s a breakdown of what each part of the code means: 

CNMG: This is the ISO code for a turning insert with a rhombic shape. 

120404: The first two digits (12) represent the nominal insert length in millimeters. The 
second two digits (04) represent the nominal insert width in millimeters. The last two digits 
(04) represent the thickness of the insert in millimeters. 

MS: This refers to the specific grade of material that the insert is made from. In this case, 
MS likely stands for a specific grade of carbide designed for machining steel. 

3.1.5 Air compressor  

 

Fig 3.5 Air compressor 
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3.1.6 Surface Roughness Instrument 

Surface roughness instruments are devices used to measure the roughness of surfaces. For 
this experiment we had carried used PCE-RT-11 device as shown in Fig 3.14  

 

Fig 3.6 PCE-RT-11 device 

 

Fig 3.7 Condition List of instrument 

Surface Roughness Parameters: 

Surface Roughness measurement parameters such as Ra, Rz, Rp, Rv and Rt. 

Rp: Maximum profile peak height Rv: Maximum profile valley depth Rz: Maximum 
height of the profile Ra: Arithmetic mean deviation 

Other parameters: Rsk, Rku, Rq, Rz1max 
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3.2 Minitab  

3.2.1 Introduction 

A variety of fundamental and sophisticated data analysis features are offered by the user-
friendly statistical analysis software programme known as Minitab. Because of its 
straightforward command syntax, individuals with different backgrounds and degrees of 
expertise may use it with ease. The programme is compatible with the majority of popular 
workstations, minicomputers, and mainframes in addition to PC and Macintosh systems. 
It is simple to transition between versions since the worksheet and instructions are 
consistent across computer systems and versions. The Windows version of Minitab 
provides a user-friendly interface with pull-down menus and dialog boxes that prompt the 
user at every step to make statistical analysis more intuitive. Data can be entered into a 
spreadsheet-like window or imported from other software programs. Minitab's graphics 
capabilities offer unlimited possibilities for creating visually impressive presentations, and 
macros allow custom operations for specific applications. A screen shot of the Minitab 
interface is shown in Figure 3.8. 

 

Fig 3.8 Minitab interface 
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3.2.2 Specifications of MINITAB 

 Operating systems: Windows 8, Windows 10, Windows 11, MacBook. 

 RAM 32-bit systems - 1 GB (minimum), 64-bit systems - 2 GB (minimum). 

 PROCESSOR intel® Pentium® 4 minimum. 

 Hard disk space: 2 GB (minimum) free space required. 

 Screen resolution: 1024 x 768 or higher. 

 Connectivity: Internet connection is required for Minitab installation/activation and 
help content 

3.2.3 FEATURES OF MINITAB 

 Assistant 

i. Hypothesis Tests. 

ii. Capability Analysis. 

iii. Control Charts. 
 Graphics 

i. Contour and rotating 3D plots. 

ii. Automatically updates graphs as data change. 

iii. Brush graphs to explore points of interest. 
 Basic Structures 

i. Descriptive Statistics. 

ii. Normality Tests. 

iii. Outlier Tests. 
 Reliability/Survival 

i. Goodness of fit measures. 

ii. Accelerated life Testing. 

iii. Multiple Failure Modes. 
 Stimulations and Distributions 

i. Random Number Generator. 

ii. Random Sampling. 

iii. Bootstrapping and Randomization Tests. 
 Multivariate 

i. Factor Analysis. 

ii. Discriminative Analysis. 

iii. Cluster Analysis. 
 Macros and Customizations 

i. Python Integration. 

ii. R Integration. 
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iii. Customizable Menus and Toolbars. 
 Time Series and Forecasting 

i. Time Series Analysis. 

ii. Trend Analysis. 

iii. Forecast with ARIMA Model. 
 Non Parameters 

i. Sign Test. 

ii. Friedman Test. 

iii. Runs Test. 

3.2.4 Uses and Application of MINITAB 

Minitab has several practical applications, including but not limited to: 

• Implementation of Six Sigma projects in various industries and research settings. 

• Converting complex data sets into a simplified form. 

• Generating graphical output, such as scatter plots, box plots, histograms, etc., to help 
visualize the data. 

• Using it as a tool for learning and conducting statistical research. 

• Minitab is a user-friendly and efficient software for inputting, manipulating, and 
analyzing statistical data, as well as identifying trends, patterns, and solutions 
to current issues. 

3.3 ANOVA-DOE  

3.3.1 Introduction to ANOVA 

The user-friendly statistical analysis tool known as Minitab provides a number of basic 
and advanced data analysis functions. People with various educational backgrounds and 
levels of competence may use it easily because to its simple command syntax. Along with 
PC and Macintosh operating systems, the application is compatible with the majority of 
common workstations, minicomputers, and mainframes. Since the worksheet and 
instructions are the same across computer systems and versions, switching between them 
is straightforward. 

The arithmetic average of a group of variables is referred to as a mean in ANOVA. The 
overall mean and the sample mean are determined as part of the ANOVA test. The overall 
mean () is the average of the sample means from all groups or the mean of all observations, 
whereas the sample mean (n) is the average value for a specific group. 
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3.3.2 Formula for ANOVA 

F=MSE/MST  

Where: F= F-static (Fisher's Ratio) 

MST=Mean sum of squares of variation. 

MSE=Mean sum of squares of residual . 

3.3.3 TERMS OF ANOVA TESTS 

 MEANS (GRAND AND SAMPLE) 

The F-statistic or F-ratio is a statistical measure that quantifies the degree of difference 
between the means of different samples or the significance level of their differences. It 
represents a ratio between the effect size, which is in the numerator, and the variance 
associated with that effect, which is reflected in the denominator. 

 

 F-STATISTIC 

The F-statistic or F-Ratio is a statistical measure that quantifies the degree of difference 
between means of distinct samples or the level of significance of their differences. It 
represents a ratio of the effect size, which is captured in the numerator, and the variance 
linked to that effect, which is reflected in the denominator. 

 

The F statistic is a measure of the ratio of variances, as it uses variances to explain the 
effect measure and the error measure. The F-value is always non-negative. When the F-
value is greater than 1, it means that the variance caused by the effect is greater than the 
variance associated with the sampling error. This can be represented as F > 1, where the 
variance caused by the effect is greater than the variance caused by the error. On the other 
hand, if F< 1 means that the variance due to the effect is less than the variance due to the 
error. When F is equal to 1, it means that the variation due to the effect is equal to the 
variation due to the error, which is not ideal. 

 SUMS OF SQUARES 

In regression analysis, the sum of squares is a statistical technique used to calculate the 
dispersion of data points. The F value is also calculated using it in the ANOVA test. It is 
frequently referred to as variation since it contains information on the standard deviation. 
The following is the formula for computing the sum of squares. 
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While calculating the value of F, we need to find SS Total that is equal to the sum of 
SSEffect and SSError.  

                                       SSTotal = SSEffect + SSError  

 DEGREES OF FREEDOMS (Df): 

Degrees of freedom can be defined as the highest number of values that are independent 
of each other and have the ability to change within a given dataset. 

Df = N-1 

Where: 

Df  = Degree of Freedom         N = Number of Values 

 MEAN SQUARED ERROR (MSE): 

By calculating the Mean Squared Error, we can determine the typical amount of error 
present within a dataset on average. The Mean Squared Error can be obtained by dividing 
the sum of squares by the degrees of freedom.  

 

 HYPOTHESIS (ALTERNATE AND NULL): 

A hypothesis is an informed assumption made about a phenomenon. When we are 
presented with a dataset and asked to make a prediction, we employ certain calculations 
and arrive at an educated guess, which is essentially a hypothesis. In the context of the 
ANOVA test, we use two hypotheses - the Null Hypothesis (H0) and the Alternate 
Hypothesis (H1). 

H0 =μ1=μ2=μ3= …. = µn NULL HYPOTHESIS 

H1: μ1≠µn ALTERNATE HYPOTHESIS 

 GROUP VARIABILITY(WITHIN GROUP AND BETWEEN 
GROUP): 

To comprehend the concept of group variability, it's essential to have a clear understanding 
of what constitutes a group. In the ANOVA test, a group refers to the collection of samples 
belonging to the independent variable. The variability within the groups and among the 
individual groups both play a crucial role in determining the overall group variability. 
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 Df 

"Df," commonly known as "degrees of freedom," usually pertains to the regression 
model's degrees of freedom. Degrees of freedom signify the number of independent 
information units accessible to estimate a parameter within a statistical model. 

 Adj ss 

"ADJ SS" in Response Surface Regression usually stands for "Adjusted Sum of Squares" 
The sum of squares is a metric that measures the variability in the data that is accounted 
for by the model. In response surface regression, adjusted sum of squares is a revised form 
of sum of squares that accounts for the number of predictor variables included in the 
model. 

 Adj ms 
Generally speaking, "ADJ MS" in response surface regression refers to "Adjusted Mean 
Squares". Adjusted for the degrees of freedom used to estimate the model parameters, the 
adjusted mean squares are a measure of the variability in the response variable that can be 
explained by the predictor variables in the model. The adjusted sum of squares is divided 
by the degrees of freedom to produce the adjusted mean squares. 

 F value 

The "F-value" is a statistical test statistic used in response surface regression to evaluate 
the importance of the regression model or specific predictor variables inside the model. 
The adjusted mean square for the predictor variable or regression model is divided by the 
mean square of the residuals to determine the F-value. This ratio shows how much of the 
response variable's variability is explained by the predictor variables in the model as 
opposed to how much of it is unaccounted for. 

 P value 
Response surface regression uses a statistical metric known as the "p-value" to assess the 
statistical significance of the regression model as a whole or of each individual predictor 
variable. If the null hypothesis is true, the p-value shows the likelihood of finding a test 
statistic that is as severe as what was seen in the data. The null hypothesis in response 
surface regression is that the regression model or predictor variable(s) have no discernible 
impact on the response variable. 

 Percentage contribution (% contribution) 

In response surface regression, the "% contribution" represents the percentage of the 
response variable's variability that each predictor variable in the model contributes to. In 
terms of explaining the variation in the response variable, this quantifies the importance 
of each predictor variable. When the sum of the squares explained by each predictor 
variable in the model is divided by the sum of the squares in the entire model and 
multiplied by 100, the result is the percentage of the variability in the response variable 
that is explained by each predictor variable. 
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3.3.4 Introduction to DOE 

An experiment's design comprises a number of planned trials or runs in which the input 
variables are altered and the resulting effects are tracked. Experimental designs are a 
systematic method for examining the factors in a process or product that have an impact 
on the quality of a product in an industrial setting. Improvement projects can be focused 
to increase product manufacturability, reliability, quality, and performance in the field by 
identifying the critical process conditions and product components that influence product 
quality. 

3.3.5 Terms of DOE 

 TAGUCHI DESIGN 
A taguchi design is a type of experimental design that aims to improve the consistency of 
a product or process in its operating environment. The taguchi design approach recognizes 
that some factors that contribute to variability may be beyond control and are referred to 
as confounding factors. Rather than attempting to control these factors, Taguchi designs 
focus on identifying and manipulating controllable factors (control factors) that can 
minimize the effects of confounding factors. Through experimentation, the confounding 
factors are intentionally varied to create variability, and optimal settings for the control 
factors are identified to create a robust process or product that is resistant to variation due 
to confounding factors. Such an approach leads to a more consistent outcome of a process 
and ensures consistent performance of a product, regardless of its deployment 
environment. 

 REPONSE SURFACE DESIGN 

Response surface design is an advanced experimental technique used for optimizing and 
understanding a response. It is typically employed after identifying significant factors 
using screening or factorial designs. The response surface design is particularly useful 
when there is a possibility of curvature in the response surface. Figures 3.9 and 3.10 depict 
the variation in the response surface with and without curvature.                

 

Fig 3.9  Response surface with no curvature 
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Fig 3.10 Response surface with curvature 

Response surface equations and factorial design equations differ in that response surface 
equations include quadratic terms, which allow for the modeling of curvature in the 
response surface. This makes response surface equations valuable for several purposes, 
such as mapping a region of the response surface, identifying the optimal levels of 
variables for maximizing the response, and determining the appropriate operating 
conditions for meeting desired specifications. Essentially, response surface equations are 
a powerful tool for understanding and optimizing responses. 

3.4 MATLAB 

3.4.1 Introduction 

For this experiment we are using MATLAB R2015. MATLAB R2015 is a software 
program developed by Math Works that provides a powerful platform for numerical 
computing and data analysis. It is widely used in engineering, science, and mathematics, 
as well as in various other fields, due to its versatility and ease of use. 

MATLAB R2015 includes a comprehensive set of tools for data visualization, data 
analysis, and numerical computation. It also features an interactive development 
environment (IDE) that allows users to write and debug their own scripts and functions. 
The program's syntax is based on the MATLAB language, which is easy to learn and 
understand. 

Some of the key features of MATLAB R2015 include support for parallel computing, 
machine learning, and deep learning. It also includes a variety of built-in functions and 
toolboxes for signal processing, image processing, optimization, and statistics. Fig 3.11  
shows matlab user interface overview 
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Fig 3.11 MATLAB USER INTERFACE OVERVIEW 

3.4.2 Specifications of MATLAB R2015 

 System requirements: MATLAB R2015 is available for Windows, Mac, and Linux 
operating systems. The minimum system requirements are a 64-bit processor and 4 GB 
of RAM, although higher specifications are recommended for optimal performance. 

 Programming language: MATLAB R2015 uses a high-level programming language 
that allows users to write scripts and functions for numerical computation, data 
analysis, and visualization. The language is based on matrix operations and includes a 
wide range of built-in functions for common tasks. 

 Toolboxes: MATLAB R2015 includes a range of toolboxes for specific applications, 
such as signal processing, control systems, and image processing. These toolboxes 
provide additional functions and features tailored to specific domains. 

 Graphics: MATLAB R2015 includes a powerful graphics engine for creating 2D and 
3D visualizations of data. The graphics engine supports a wide range of plot types and 
customization options. 

 Fuzzy logic toolbox: MATLAB R2015 includes a fuzzy logic toolbox for designing 
and simulating fuzzy systems. This toolbox provides functions for defining fuzzy sets, 
creating fuzzy rules, and evaluating fuzzy systems. 

 Simulink: MATLAB R2015 includes Simulink, a block diagram environment for 
simulating and modeling dynamic systems. Simulink provides a visual interface for 
designing and simulating complex systems, and includes a wide range of predefined 
blocks for common tasks. 

 Parallel computing: MATLAB R2015 includes built-in support for parallel computing, 
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allowing users to distribute computations across multiple processors or computers. 
This can significantly reduce computation time for large-scale problems. 

Working 

 Data import and manipulation: Users can import data into MATLAB R2015 from 
various sources, such as spreadsheets or databases. The data can then be manipulated 
using built-in functions or custom scripts. 

 Data visualization: MATLAB R2015 provides a variety of tools for data visualization, 
including 2D and 3D plots, histograms, and scatter plots shown in Fig 3.12. Users can 
customize these visualizations using built-in functions or custom scripts. 

 Numerical computation: MATLAB R2015 allows users to perform numerical 
computations on their data, such as matrix operations, differential equations, and 
optimization. Built-in functions and toolboxes are available for these operations. 

 Programming: MATLAB R2015 provides an interactive development environment 
(IDE) that allows users to write and debug their own scripts and functions. The syntax 
of MATLAB is similar to other programming languages, making it easy to learn and 
use. 

 Toolboxes: MATLAB R2015 includes a variety of built-in toolboxes that provide 
additional functionality for various fields such as signal processing, image processing, 
and statistics. 

 Deployment: MATLAB R2015 allows users to deploy their programs as standalone 
applications or integrate them with other programming languages and applications. 

 

Fig 3.12 Analyzing and visualizing data 
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Application 

MATLAB R2015 has a wide range of applications in various fields due to its versatility 
and ease of use. Some of the common applications of MATLAB R2015 include: 

 Engineering: MATLAB R2015 is widely used in engineering for designing, analyzing, 
and optimizing systems. It is used for signal processing, control systems, robotics, and 
many other applications. 

 Science: MATLAB R2015 is used in science for data analysis, modeling, and 
simulation. It is used in fields such as physics, chemistry, biology, and environmental 
science. 

 Finance: MATLAB R2015 is used in finance for data analysis, risk management, and 
financial modeling. It is used for options pricing, portfolio optimization, and financial 
forecasting. 

 Education: MATLAB R2015 is used in education for teaching mathematics, 
programming, and data analysis. It is used in schools and universities to teach a variety 
of subjects, including physics, engineering, and economics. 

 Research: MATLAB R2015 is used in research for data analysis, modeling, and 
simulation. It is used in various fields such as medicine, psychology, and sociology. 

 Machine learning: MATLAB R2015 includes machine learning toolboxes that are used 
for developing and implementing machine learning algorithms. It is used in 
applications such as image recognition, natural language processing, and predictive 
analytics. 

3.4.3 Rules for using MATLAB R2015 

In MATLAB R2015, rules can refer to different things depending on the context. Here are 
a few examples of how rules are used in MATLAB R2015: 
 Fuzzy logic rules: In the fuzzy logic toolbox, rules are used to define the relationship 

between the input and output variables in a fuzzy system. These rules are expressed 
using linguistic terms and are often represented in the form of if-then statements. For 
example, a rule might be "if temperature is cold and humidity is high, then the air 
conditioning should be turned on". The fuzzy logic toolbox in MATLAB R2015 
provides functions for adding and removing rules, as well as for adjusting their 
parameters. 

 MATLAB programming rules: In MATLAB R2015, rules are used to define the syntax 
and structure of MATLAB code. These rules ensure that the code is well-formed and 
can be executed correctly. For example, in MATLAB, the equal sign (=) is used for 
assignment, while the double equal sign (==) is used for comparison. MATLAB 
provides a set of programming rules to ensure that code is consistent and easy to 
understand. 

 Simulink rules: In Simulink, rules are used to define the behavior of a simulation. 
These rules specify how the different components of the simulation interact with each 
other, and how the simulation responds to different inputs. For example, a rule might 
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be "if the input signal exceeds a certain threshold, then a certain component should be 
activated". 

 Simulink provides a set of rules for designing and simulating complex systems. 

3.4.4 Uses of MATLAB R2015 

 Data analysis and visualization: MATLAB R2015 provides powerful tools for data 
analysis, visualization, and exploration. It can be used to import and manipulate data 
from various sources, perform statistical analysis, and create visualizations such as 
plots, graphs, and charts. 

 Algorithm development: MATLAB R2015 is widely used in the development of 
algorithms for various applications, such as signal processing, image and video 
processing, and control systems. It provides a rich set of functions and tools for 
developing, testing, and debugging algorithms. 

 Scientific computing: MATLAB R2015 is used extensively in scientific computing for 
numerical simulations, modeling, and optimization. It provides a wide range of 
numerical methods and techniques for solving complex problems in areas such as 
physics, engineering, and finance. 

 Control system design: MATLAB R2015 is commonly used in the design and analysis 
of control systems. It provides a variety of tools for modeling, simulating, and 
analyzing control systems, including linear and nonlinear systems, PID controllers, 
and state-space models. 

 Machine learning and deep learning: MATLAB R2015 provides comprehensive 
support for machine learning and deep learning, including neural networks, support 
vector machines, decision trees, and clustering algorithms. It allows users to train, test, 
and deploy machine learning models with ease. 

 Image and video processing: MATLAB R2015 is widely used in image and video 
processing applications. It provides tools for image filtering, segmentation, feature 
extraction, and object recognition, as well as video processing and analysis. 

 

3.5 Regression Analysis 

3.5.1 Introduction 

Regression analysis is a statistical technique that aims to explore the relationships between 
different variables. It involves gathering data on the relevant variables and determining 
the quantitative impact of one variable on another, as depicted in Fig 3.13. Additionally, 
the researcher assesses the "statistical significance" of the estimated relationships, which 
reflects the level of confidence that the estimated relationship is close to the true 
relationship. While regression analysis has traditionally been used in economic statistics, 
it is now gaining significance in legal contexts for policy-making and decision-
making purposes.  
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Fig 3.13 Regression optimization window 

3.5.2 Types of Regression Analysis 

I. Simple Linear Regression 
Simple linear regression is a statistical analysis that investigates the association between 
two continuous variables - one is the response variable (y) and the other is the predictor 
variable (x). If there is a relationship between the two variables, it becomes possible to 
make predictions about the response variable based on the predictor variable with a higher 
degree of accuracy. The regression analysis yields a line of best fit, as depicted in Fig 3.14, 
which can be utilized to: 
• Study how the response variable changes as the predictor variable varies. 
• Anticipate the value of the response variable (y) for any given value of the predictor 
variable (x). 
Y = a X2+ bX + ϵ 
Where: 
Y – Variable that is dependent 
X – Independent (explanatory) variable 
a – Intercept 
b – Slope 
ϵ – Residual (error) 
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Fig 3.14 Simple Regression Analysis  

II. Multiple Linear Regression 

Multiple linear regression is a statistical method that examines the linear relationships 
between a continuous response variable and two or more predictor variables, as illustrated 
in figure 3.15. When there are many predictor variables, it is advisable to use model-
selection techniques like stepwise or best subsets to eliminate any predictors that are not 
significantly associated with the response variable before fitting the regression model. The 
equation for multiple linear regression can be expressed as: 
y = ß0 + ß1 x1 + ß2 x2 + ... + ßn xn + ϵ 
Here, y represents the predicted value of the dependent variable, ß0 is the y-intercept, and 
ß1 to ßn are the regression coefficients for the independent variables x1 to xn, respectively. 
The coefficients indicate the effect of increasing each independent variable on the 
predicted value of the dependent variable. The term ϵ represents the model error or the 
degree of flexibility in the estimate of the dependent variable. 

 
Fig 3.15 Multiple Regression 
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3.6 Fuzzy Logic Optimization 

3.6.1 Introduction 

A mathematical framework called fuzzy logic was developed to cope with data 
imprecision and ambiguity. It is especially helpful in situations when human thinking is 
necessary and conventional logic and binary true/false values are insufficient. Fuzzy sets, 
which allow for a degree of membership in a set rather than a binary true/false value, are 
the foundation of fuzzy logic. Control systems, decision support systems, image 
processing, medical diagnostics, and robotics are just a few of the areas where fuzzy logic 
may be used. The two primary varieties of fuzzy inference systems are: Sugeno and 
Mamdani. Sugeno FIS is more suited for tasks that call for precise control, whereas 
Mamdani FIS is the more conventional and often used approach. In Mamdani FIS, fuzzy 
logic is used to design the rules while membership functions are used to fuzzify the input 
variables. For a clear value, the output variables are defuzzified. In Sugeno FIS, the output 
variables are created by simply combining the input variables in a linear fashion. 

3.6.2 Fuzzy Inference systems 

Mamdani-type (1977) and Sugeno-type (1985) fuzzy inference systems are the two basic 
varieties that may be used. The methods used to derive outputs in these two types of 
inference systems differ substantially. 

Mamdani Fuzzy interference systems 

A Mamdani fuzzy inference system (FIS) is a type of fuzzy logic system that uses fuzzy 
sets and fuzzy rules to reason about uncertain or imprecise information. In a Mamdani 
FIS, inputs are first mapped to fuzzy sets using fuzzy membership functions. Based on 
how closely each input variable fits the features of the fuzzy set, the membership function 
assigns a degree of membership to each input variable for each fuzzy set. The language 
phrases "very high," "high," "medium," "low," and "very low," which denote the degree 
of membership of the input variable to each fuzzy set, are typically used to create fuzzy 
sets. The "if" section of a "if-then" statement, which defines a combination of fuzzy sets 
for the input variables and the "then" part, specifies a fuzzy set for the output variable, is 
how Mamdani FIS's fuzzy rules are written. Each rule has a level of certainty attached to 
it that describes how accurate it is in general. 

Advantages of Mamdani FIS over Sugeno FIS: 

1. Interpretability: Mamdani FIS outputs are fuzzy sets with linguistic labels that are 
easily interpretable by humans. This makes Mamdani FISs more transparent and easier 
to explain, which can be an advantage in some applications. 

2. Flexibility: Mamdani FISs can handle more complex relationships between input 
variables and output variables compared to Sugeno FISs, which are limited to linear 
relationships. Mamdani FISs can use a wide variety of membership functions and 
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fuzzy rules 
3. Ability to handle uncertainty: Mamdani FISs are more suited for handling 

uncertainty and vagueness in data due to the use of fuzzy sets and fuzzy logic, which 
can capture uncertain or imprecise information. 

4. Use of expert knowledge: Mamdani FISs can incorporate expert knowledge through 
the use of linguistic rules and fuzzy sets, which can be useful in decision-making 
applications. 

5. Robustness: Mamdani FISs are more robust to changes in the input data, as they are 
based on a fuzzy set of rules rather than a fixed set of mathematical equations. 

3.7 Response Surface Optimization 

A system's behaviour may be predicted using a model of the system using the mathematical 
modelling and optimisation approach known as "response surface optimisation." It is 
especially helpful when the system is complicated and the factors influencing its behaviour 
are challenging to regulate or directly assess. An overview of response surface roughness 
optimisation is shown in Fig. 3.16. 

Response surface optimization's fundamental premise is to develop a mathematical model 
that connects the input variables to the desired output variable. This model may be used to 
identify the ideal input variable values that will produce the intended outcome. A set of 
experimental data that comprises measurements of the output variables under various 
situations of the input variables is often used to build the model. 

The best input variable values can be found after the model has been developed using a 
number of optimisation strategies. Utilising a response surface optimizer, a piece of software 
created expressly to discover the best input variable values based on the model, is one 
popular strategy. 
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Fig 3.16 Response Surface Methodology 

The response surface optimizer works by iteratively adjusting the input variables and using 
the model to predict the output variable at each step. Based on these predictions, the 
optimizer makes adjustments to the input variables and continues the process until it 
converges on the optimal solution. 

Response surface optimization is widely used in engineering, physics, chemistry, and other 
fields where complex systems need to be optimized. It offers a powerful tool for improving 
the efficiency and effectiveness of systems and processes, and it has been shown to produce 
significant improvements in a wide range of applications. 
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CHAPTER 4 

EXPERIMENTAL DETAILS AND PARAMETERS 
FOR OPTIMZATION 

4.1 Experimental Details  

In the below table 3.1 we can observe that the input parameters are Speed, Feed and Depth 
of cut. The 9 set of inputs which are used for machining are given by Taguchi using 
MINITAB where we have given 3 level of factors. Now coming to the output parameters we 
have opted for Material removal rate, Surface roughness of the material (Rt, Ra , Rq , Rz).to 
find out the material removal rate we should first find out the cutting speed 

Table 4.1- Input parameters 

S.NO Speed(rpm) Feed(mm) DoC(mm) 

1 465 0.404 0.3 

2 465 0.596 0.6 

3 465 0.808 0.9 

4 740 0.404 0.6 

5 740 0.596 0.9 

6 740 0.808 0.3 

7 1000 0.404 0.9 

8 1000 0.596 0.3 

9 1000 0.808 0.6 

To find out both the cutting speed and material removal rate we use the below formulas: 

MRR = v*f*d (m3/min)                                                                         -------- EQ 4.1 

Where, 

v = Cutting speed(m/min) 

f = Feed(mm) 

d = Depth of cut(mm) 

v = (3.141*D*N)/1000                                                                          -------- EQ 4.2 

Where, D = Diameter of the work piece (mm)       N = Speed(rpm) 
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Table 4.2 - Cutting speed 

 

 

 

     

 

 

 

 

 

 

  

 

As mentioned in the above table 4.2 They are the values of cutting speed for the input 
parameters which are in the table 4.1. Using the formulas given above we found out the 
cutting speed. 

Table 4.3- Material removal rate 

                                                                         

                            

 

 

 

 

 

 

 

 

The Material Removal Rates for the input parameters are given in above table 4.3 

S.NO Cutting speed(m/min) 

1 46.74 

2 46.74 

3 46.74 

4 74.38 

5 74.38 

6 74.38 

7 100.51 

8 100.51 

9 100.51 

Cutting speed(m/min) Feed(mm) DoC(mm) MRR (m3/min) 

46.74 0.404 0.3 5.66 

46.74 0.596 0.6 16.71 

46.74 0.808 0.9 33.99 

74.38 0.404 0.6 18.03 

74.38 0.596 0.9 39.90 

74.38 0.808 0.3 18.03 

 100.51 0.404 0.9 36.55 

100.51 0.596 0.3 17.97 

100.51 0.808 0.6 48.73 
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Here we are also including the flowrate in the machining . For one work piece the flowrate 
of MQL setup is 90ml/hr(table 8) and for another workpiece the flowrate of MQL setup is 
180ml/hr (table 7). After completion of the machining for both the workpieces we have used 
surface roughness tester and noted the values of Rt , Ra , Rq , Rz. 

 Table 4.4 Surface roughness values for workpiece with flowrate of 180ml/hr 

Cutting 
speed(m/min) 

Feed(mm) DoC(mm) 
Rt (µm) Ra(µm) Rq(µm) Rz(µm) 

46.74 0.404 0.3 36.0148 5.716 6.756 28.39 

46.74 0.596 0.6 16.57 2.123 2.661 12.019 

46.74 0.808 0.9 43.485 10.05 11.717 39.377 

74.38 0.404 0.6 32.588 5.287 6.542 23.39 

74.38 0.596 0.9 43.228 9.266 11.069 38.931 

74.38 0.808 0.3 44.02 8.98 10.111 34.84 

 100.51 0.404 0.9 25.539 4.029 4.932 20.266 

100.51 0.596 0.3 45.475 9.912 11.25 38.158 

100.51 0.808 0.6 24.795 4.814 5.837 21.955 

 

Table 4.5 Surface roughness values for workpiece with flowrate of 90ml/hr 

Cutting 
speed(m/min) 

Feed(mm) DoC(mm) 
Rt 
(µm) 

Ra 
(µm) 

Rq 
(µm) 

Rz 
(µm) 

46.74 0.404 0.3 43.346 9.285 10.304 36.371 

46.74 0.596 0.6 37.48 8.318 9.527 32.055 

46.74 0.808 0.9 54.134 15.639 16.825 49.587 

74.38 0.404 0.6 56.654 9.023 11.831 51.709 

74.38 0.596 0.9 40.637 10.026 11.309 37.417 

74.38 0.808 0.3 48.085 8.256 9.896 37.249 

 100.51 0.404 0.9 64.777 9.209 12.673 58.808 

100.51 0.596 0.3 43.279 6.464 7.913 31.714 

100.51 0.808 0.6 35.418 9.236 10.333 32.984 
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The above two tables 4.4 and 4.5 represents surface roughness values which we got using 
surface roughness tester for the workpeices 1 and 2 with flowrate of 180ml/hr and 90 m/hr 
respectively. 

Table 4.6 Input and output parameters used for optimization and prediction for 
workpiece with flowrate of 180ml/hr 

 

Table 4.7 Input and output parameters used for optimization and prediction for 
workpiece with flowrate of 90ml/hr 

Cutting speed 
(m/min) 

Feed 
(mm) 

DoC 
(mm) 

MRR 
(m3/min) 

Rt 

 (µm) 
Ra 

(µm) 
Rq 

(µm) 
Rz 

(µm) 

46.74 0.404 0.3 5.66 36.0148 5.716 6.756 28.39 

46.74 0.596 0.6 16.71 16.57 2.123 2.661 12.019 

46.74 0.808 0.9 33.99 43.485 10.05 11.717 39.377 

74.38 0.404 0.6 18.03 32.588 5.287 6.542 23.39 

74.38 0.596 0.9 39.90 43.228 9.266 11.069 38.931 

74.38 0.808 0.3 18.03 44.02 8.98 10.111 34.84 

 100.51 0.404 0.9 36.55 25.539 4.029 4.932 20.266 

100.51 0.596 0.3 17.97 45.475 9.912 11.25 38.158 

100.51 0.808 0.6 48.73 24.795 4.814 5.837 21.955 

Cutting 
speed(m/min) 

Feed(mm) DoC(mm) 
MRR 
(m3/min) 

Rt 
(µm) 

Ra 
(µm) 

Rq 
(µm) 

Rz 
(µm) 

46.74 0.404 0.3 5.66 43.346 9.285 10.304 36.371 

46.74 0.596 0.6 16.71 37.48 8.318 9.527 32.055 

46.74 0.808 0.9 33.99 54.134 15.639 16.825 49.587 

74.38 0.404 0.6 18.03 56.654 9.023 11.831 51.709 

74.38 0.596 0.9 39.90 40.637 10.026 11.309 37.417 

74.38 0.808 0.3 18.03 48.085 8.256 9.896 37.249 

 100.51 0.404 0.9 36.55 64.777 9.209 12.673 58.808 

100.51 0.596 0.3 17.97 43.279 6.464 7.913 31.714 

100.51 0.808 0.6 48.73 35.418 9.236 10.333 32.984 
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Table 4.6 and 4.7 shows the input and output parameters used for optimization and prediction 
for both workpieces. 

4.2 Optimization inputs  

4.2.1 Fuzzy engine 

 

Fig 4.1 Matlab command window 

Here from the above Fig 4.1 we can see the command window where we can give 
commands. As we are doing fuzzy logic optimization we should type fuzzy and click on 
enter . then a dialog box is displayed . where we can observe input parameter , fuzzy 
inference system and output parameters 
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Fig 4.2 Fuzzy Logic Interface 

Here the from the above Fig 4.2 we can see the input , output parameters and fuzzy 
inference system .Here we use mamdani inference system because in most of the 
literatures mamdani inference system is used. As you can see in above figure by clicking 
on edit option some options are displayed. By clicking on add variable we can add more 
input variables and output variables. 

 

Fig 4.3 Membership functions interface 
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By clicking on membership functions another window is displayed where we can edit 
membership functions shown in fig 4.3. We can give names to that membership functions 
and we can also give range . we can give these names and range for inputs and outputs. 
Here we can also add membership functions also. 

 

Fig 4.4 Rule editor Interface 

The above Fig 4.4 represents the rule editor where we can add rules to train the fuzzy logic 
system. We need to train the fuzzy logic system with as many as rules to get accurate 
values. The values given are AI generated values. 

4.2.2 RESPONSE SURFACE OPTIMIZATION INPUTS AND OUTPUTS 

We use minitab software for response surface optimization. In the below figure we can 
see the interface of the minitab software after opening it. It almost looks like a excel sheet. 
To that, we should add our experimental inputs and outputs as shown in the below Fig 4.5 
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Fig 4.5 Input and output values in Minitab interface 

 

Fig 4.6 Minitab interface for Response Surface optimization 

In the above Fig 4.6 we can see that we had given input values like Cutting speed , Feed 
and Depth of Cut and output parameter like MRR , Rt , Ra , Rq , Rz. Now for optimization 
we have to click on Stat and then we have to click on DOE .Now we have to select 
Response surface .  In that we have to click on Define Custom Regression Surface Design. 
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Fig 4.7 Defining custom Regression Surface Design Interface 

After clicking on Define Custom Regression Surface Design we have to select the input 
parameters and click on ok. Here we have to define only input values . Now we have to 
click on Analyze Response Surface Design. As shown in Fig 4.7 

 

 

Fig 4.8 Analyse Response Surface Design Interface 
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In the above Fig 4.8 we can see the dialog box which is opened after clicking on Analyse 
Response Surface Design . Now we have to select the output values like MRR , Rt , Ra , 
Rq , Rz now we have select the Terms and we have to opted for linear because we have 
checked the interactions , squares and full quadratic equation . Except in linear in other 
aspects we haven’t got significant values so we have opted for linear type of equation. 
While selecting the graphs according to our requirement we have selected normplots and 
scattered plots. Now we have to click on OK. The output that came from the optimization 
will be continued or discussed in Results and Discussion. 

4.2.3 Response Optimizer Inputs 

After completing the Response Surface optimization to derive the best cutting parameter 
we use Response Surface Optimizer. To open the Response Surface Optimizer first click 
on Stat-DOE-Response Surface – Response Surface Optimizer.After clicking on it will 
show a dialog box as shown in figure 4.9 

 

Fig 4.9 Response optimizer interface 

In that Dialog box there are is an option named Goal. Here we there are three options to 
give. They are Minimum, Maximum and Target. For the Surface roughness values (Rt, 
Ra, Rq, Rz) we should give Minimum and for MRR we should give Maximum. By giving 
other input functions and clicking on Ok we can get the Optimization plot. 

 

 

 



67 
 

CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Response Surface Optimization Results 
The below are results and discussion made based on our experimentation 
and values that came from the optimization part. 

RESPOSE SURFACE OPTIMIZATON FOR WORKPIECE WITH FLOWRATE 
(180ML/HR)  
 
Response Surface Regression: MRR (m3/min) versus Cutting speed(m/min), Feed, 
DoC  

Table 5.1 Analysis of Variance of MRR of workpiece with flowrate of 180ml/hr 

Source DF Adj SS Adj MS F-Value P-Value %Contribution 
Model 3 1429.0 476.35 16.24 0.005 - 
Linear 3 1429.0 476.35 16.24 0.005 - 
Cutting 

speed(m/min) 
1 365.1 365.07 12.44 0.017 25.54 

Feed 1 275.9 275.86 9.40 0.028 19.24 
DoC 1 788.1 788.11 26.86 0.004 55.14 
Error 5 146.7 29.34    
Total 8 1575.7     

Table 5.2 Modal Summary of Analysis of Variance of MRR of workpiece with flowrate 
of 180ml/hr 

S R-sq R-sq(adi) R-sq(pred) 
5.41644 90.69% 85.11% 61.71% 

Regression Equation in Uncoded Units 

MRR (m3/min) = -38.4 + 0.2901 Cutting speed(m/min) + 33.6 Feed + 38.20 DoC    ------EQ 5.1 
 

The above MRR equation is used to find out the regression equation values for MRR of 
work piece with flowrate of 180ml/hr. The above table discusses about the DF , ADJ Sum 
of Squares, F value ,P value and % contribution. Using % contribution we can say which 
factor is most influencing for MRR while doing machining at flowrate of 180ml/hr. Here 
we can see that DOC is having % contribution of 55.14% that means in this machining part 
for MRR is mainly effected by DOC . Here R-sq value is much enough to say that out 
values are enough good for optimization 
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Fig  5.1Normplot of Residuals for MRR (m3/min)  

The above Fig 5.1 represents the Normal Probability plot for MRR value for the workpiece 
at flow rate of 180ml/hr. Here the blue dots represents the output values. The above figure 
says that all MRR values are in a linearity line, we can say that all the values are linear 
with each other. 
 
  

 
Fig 5.2 Residuals vs Fits for MRR (m3/min) 

 
The above Fig 5.2 represents the versus fits (Scattered plots)In the above figure the blue 
dots indicate MRR values. It says that for all the 9 experiments the output values are not 
same.It states that we used 9 different input parameters so for each parameter the output 
values are different. 
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Response Surface Regression: Rt (µm) versus Cutting speed(m/min), Feed, DoC  

Table 5.3 Analysis of Variance of Rt of workpiece with flowrate of 180ml/hr 

Source DF Adj SS Adj MS F-Value P-Value %Contribution 
Model 3 83.800 27.933 65.18 0.007 - 
Linear 3 83.800 27.933 65.18 0.007 - 
Cutting 

speed(m/min) 
1 0.006 0.006 9.00 0.005 0.007 

Feed 1 54.500 54.500 86.35 0.002 65.03 
DoC 1 29.295 29.295 53.19 0.004 34.95 
Error 5 785.947 157.189    
Total 8 869.747     

Table 5.4 Modal Summary of Analysis of Variance of Rt of workpiece with flowrate of 
180ml/hr 

S R-sq R-sq(adi) R-sq(pred) 
12.5375 92.64% 0.00% 0.00% 

Regression Equation in Uncoded Units 

Rt (µm) = 30.0 + 0.001 Cutting speed(m/min) + 14.9 Feed - 7.4 DoC                 --------EQ 5.2 
 

The above Rt equation is used to find out the regression equation values for Rt of work piece 
with flowrate of 180ml/hr. Here according to the %contribution the feed is the most effecting 
parameter and cutting speed is the least effecting parameter for Rt value for workpiece with 
flow rate of 180ml/hr. 
 
  

 
Fig 5.3 Normplot of Residuals for Rt (µm) 

 
The above Fig 5.3 represents the Normal Probability plot for Rt value for the workpiece at 
flow rate of 180ml/hr. Here the blue dots represents the output values. It also says that all Rt 
values are very near to the linearity line, we can say that all the values are linear with each 
other. 
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Fig 5.4 Residuals vs Fits for Rt (µm) 

The above Fig5.4 represents the versus fits (Scattered plots). In the above figure the blue 
dots indicate Rt values. It says that for all the 9 experiments the output values are not same. 
It states that we used 9 different input parameters so for each parameter the output value is 
different. 
 
Response Surface Regression: Ra (µm) versus Cutting speed(m/min), Feed, DoC  

Table 5.5 Analysis of Variance of Ra of workpiece with flowrate of 180ml/hr 

Source DF Adj SS Adj MS F-Value P-Value %Contribution 
Model 3 13.1720 4.3907 49.40 0.059 - 
Linear 3 13.1720 4.3907 4.40 0.059 - 
Cutting 

speed(m/min) 
1 0.1547 0.1547 4.01 0.010 1.175 

Feed 1 12.7515 12.7515 96.16 0.030 96.80 
DoC 1 0.2659 0.2659 8.02 0.002 2.018 
Error 5 54.7535 10.9507    
Total 8 67.9255     

Table 5.6 Modal Summary of Analysis of Variance of Ra of workpiece with flowrate of 
180ml/hr 

S R-sq R-sq(adi) R-sq(pred) 
3.30918 85.38% 0.00% 0.00% 

 
Regression Equation in Uncoded Units 
 
Ra (µm) = 2.32 + 0.0060 Cutting speed(m/min) + 7.21 Feed - 0.70 DoC                   --------EQ 5.3 
 
The above Ra equation is used to find out the regression equation values for Ra of work 
piece with flowrate of 180ml/hr. Here according to the %contribution the feed is the most 
effecting parameter and cutting speed is the least effecting parameter for Ra value for 
workpiece with flow rate of 180ml/hr. 
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Fig 5.5 Normplot of Residuals for Ra (µm) 

 The above Fig 5.5 represents the Normal Probability plot for Ra value for the workpiece at 
flow rate of 180ml/hr. Here the blue dots represents the output values. It also says that all Ra 
values are very near to the linearity line, we can say that all the values are linear with each 
other. 
 

 
Fig 5.6 Residuals vs Fits for Ra (µm) 

The above Fig 5.6 represents the versus fits (Scattered plots). In the above figure the blue 
dots indicate Ra values. It says that for all the 9 experiments the output values are not same. 
It states that we used 9 different input parameters so for each parameter the output value is 
different. 
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Response Surface Regression: Rq (µm) versus Cutting speed(m/min), Feed, DoC  

Table 5.7 Analysis of Variance of Rq of workpiece with flowrate of 180ml/hr 

Source DF Adj SS Adj MS F-Value P-Value %Contribution 
Model 3 14.8075 4.9358 0.35 0.049 - 
Linear 3 14.8075 4.9358 0.35 0.049 - 
Cutting 

speed(m/min) 
1 0.1666 0.1666 20.01 0.017 1.125 

Feed 1 14.6144 14.6144 138.05 0.052 38.69 
DoC 1 0.0265 0.0265 14.00 0.007 0.001 
Error 5 69.5750 13.9150    
Total 8 84.3825     

Table 5.8 Modal Summary of Analysis of Variance of Rq of workpiece with flowrate of 
180ml/hr 

S R-sq R-sq(adi) R-sq(pred) 
3.73028 87.55% 0.00% 0.00% 

 
Regression Equation in Uncoded Units 
 
Rq (µm) = 2.90 + 0.0062 Cutting speed(m/min) + 7.72 Feed - 0.22 DoC                  -------EQ 5.4 
 
The above Rq equation is used to find out the regression equation values for Rq of work 
piece with flowrate of 180ml/hr. Here according to the %contribution the feed is the most 
effecting parameter and depth of cut is the least effecting parameter for Rq value for 
workpiece with flow rate of 180ml/hr. 

 
Fig 5.7 Normplot of Residuals for Rq (µm) 

 
The above figure represents the Normal Probability plot for Rq value for the workpiece at 
flow rate of 180ml/hr. Here the blue dots represents the output values. It also says that all 
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Rq values are very near to the linearity line, we can say that all the values are linear with 
each other. 

 
Fig 5.8 Residuals vs Fits for Rq (µm) 

The above Fig 5.8 represents the versus fits (Scattered plots). In the above figure the blue 
dots indicate Rq values. It says that for all the 9 experiments the output values are not same. 
It states that we used 9 different input parameters so for each parameter the output value is 
different. 

 Response Surface Regression: Rz (µm) versus Cutting speed(m/min), Feed, DoC  
Table 5.9 Analysis of Variance of Rz of workpiece with flowrate of 180ml/hr 
 

Source DF Adj SS Adj MS F-Value P-Value %Contribution 
Model 2 97.069 32.356 69.24 0.065 - 
Linear 2 97.069 32.356 69.24 0.065 - 
Cutting 

speed(m/min) 
1 0.139 0.139 5.00 0.056 0.0014 

Feed 1 95.610 95.610 99.71 0.037 98.496 
DoC 1 1.320 1.320 1.01 0.025 1.3598 
Error 5 671.826 134.365    
Total 8 768.895     

Table 5.10 Modal Summary of Analysis of Variance of Rz of workpiece with flowrate 
of 180ml/hr 

S R-sq R-sq(adi) R-sq(pred) 
11.5916 82.62% 0.00% 0.00% 

 
Regression Equation in Uncoded Units 
 
Rz (µm) = 17.2 + 0.006 Cutting speed(m/min) + 19.8 Feed - 1.6 DoC                   ------EQ 5.5 
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The above Rz equation is used to find out the regression equation values for Rz of work 
piece with flowrate of 180ml/hr. Here according to the %contribution the feed is the most 
effecting parameter and cutting speed is the least effecting parameter for Rz value for 
workpiece with flow rate of 180ml/hr.  

 

Fig 5.9 Normplot of Residuals for Rz (µm) 

The above Fig 5.9 represents the Normal Probability plot for Rz value for the workpiece at 
flow rate of 180ml/hr. Here the blue dots represents the output values. It also says that all Rz 
values are very near to the linearity line, we can say that all the values are linear with each 
other. 
 

 
Fig 5.10 Residuals vs Fits for Rz (µm) 

The above Fig 5.10 represents the versus fits (Scattered plots). In the above figure the blue 
dots indicate Rt values. Here the blue dots represents the output values. It says that for all 
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the 9 experiments the output values are not same. It states that we used 9 different input 
parameters so for each parameter the output value is different. 
Table 5.11 Regression Equation Generated Values For Workpiece Of Flowrate 
(180ml/Hr) 

Cutting speed 
(m/min) 

Feed 
(mm) 

DoC 
(mm) 

MRR 
(m3/min) 

Rt 
(µm) 

Ra 
(µm) 

Rq 
(µm) 

Rz 
(µm) 

46.74 0.404 0.3 0.236 33.846 5.303 6.243 12.343 

46.74 0.596 0.6 18.147 34.487 6.478 7.659 15.664 

46.74 0.808 0.9 36.73 35.426 7.796 9.23 19.382 

74.38 0.404 0.6 19.739 31.654 5.259 6.348 14.715 

74.38 0.596 0.9 37.65 32.295 6.433 7.764 18.037 

74.38 0.808 0.3 21.853 39.894 8.382 9.533 23.194 

100.51 0.404 0.9 38.803 29.46 5.206 6.444 16.932 

100.51 0.596 0.3 22.334 36.761 7.01 8.058 21.693 

100.51 0.808 0.6 40.917 37.7 8.329 9.629 25.411 

The above table represents the values which are generated from using the equations which 
are given above respectively. So that these values can be used for comparison of 
experimental values and regression equation generated values. 

RESPOSE SURFACE OPTIMIZATON FOR WORKPIECE WITH FLOWRATE 
(90ML/HR)  
 
Response Surface Regression: MRR (m3/min) versus Cutting speed(m/min), Feed, 
DoC  

Table 5.12 Analysis of Variance of MRR of workpiece with flowrate of 90ml/hr 

Source DF Adj SS Adj MS F-Value P-Value %Contribution 
Model 3 1429.0 476.35 16.24 0.005 - 
Linear 3 1429.0 476.35 16.24 0.005 - 
Cutting 

speed(m/min) 
1 365.1 365.07 12.44 0.017 25.54 

Feed 1 275.9 275.86 9.40 0.028 19.54 
DoC 1 788.1 788.11 26.86 0.004 55.14 
Error 5 146.7 29.34    
Total 8 1575.7     

Table 5.13 Modal Summary of Analysis of Variance of MRR of workpiece with 
flowrate of 90ml/hr 

S R-sq R-sq(adi) R-sq(pred) 
5.41646 90.69% 85.11% 61.71% 

 
Regression Equation in Uncoded Units 
MRR (m3/min) = -38.4 + 0.2901 Cutting speed(m/min) + 33.6 Feed + 38.20 DoC      ------- EQ 5.6 
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The above MRR equation is used to find out the regression equation values for MRR of work 
piece with flowrate of 90ml/hr. The above table discusses about the DF, ADJ Sum of 
Squares, F value, P value and % contribution. Using % contribution we can say which factor 
is most influencing for MRR while doing machining at flowrate of 90ml/hr. Here we can see 
that DOC is having % contribution of 55.14% that means in this machining part for MRR is 
mainly effected by DOC. Here R-sq value is much enough to say that out values are enough 
good for optimization 
 

 
 

Fig 5.11 Normplot of Residuals for MRR (m3/min) 

The above Fig 5.11 represents the Normal Probability plot for MRR value for the workpiece 
at flow rate of 90ml/hr. Here the blue dots represents the output values. The above figure 
says that all MRR values are in a linearity line, we can say that all the values are linear with 
each other. 
 

 

Fig 5.12 Residuals vs Fits for MRR (m3/min) 
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The above Fig 5.12 represents the versus fits (Scattered plots) In the above figure the blue 
dots indicate MRR values. It says that for all the 9 experiments the output values are not 
same.It states that we used 9 different input parameters so for each parameter the output 
values are different. 
  

Response Surface Regression: Rt (µm) versus Cutting speed(m/min), Feed, DoC  

Table 5.14 Analysis of Variance of Rt of workpiece with flowrate of 90ml/hr 

Source DF Adj SS Adj MS F-Value P-Value %Contribution 
Model 3 229.16 76.39 120.73 0.068 - 
Linear  229.16 76.39 120.73 0.068 - 
Cutting 

speed(m/min) 
1 12.41 12.41 9.12 0.045 5.415 

Feed 1 113.93 113.93 91.09 0.045 49.71 
DoC 1 102.82 102.82 80.98 0.058 44.86 
Error 5 524.52 104.90    
Total 8 753.68     

Table 5.15 Modal Summary of Analysis of Variance of Rt of workpiece with flowrate 
of 90ml/hr 

S R-sq R-sq(adi) R-sq(pred) 
10.2423 73.48% 0.00% 0.00% 

Regression Equation in Uncoded Units 
 
Rt (µm) = 47.9 + 0.053 Cutting speed(m/min) - 21.6 Feed + 13.8 DoC              ------EQ 5.7 
 

The above Rt equation is used to find out the regression equation values for Rt of work 
piece with flowrate of 90ml/hr. Here according to the %contribution the feed is the most 
effecting parameter , Depth of cut is second most effecting parameter and  cutting speed is 
the least effecting parameter for Rt value for workpiece with flow rate of 90ml/hr. 
 

 

Fig 5.13 Normplot of Residuals for Rt (µm) 
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The above Fig 5.13 represents the Normal Probability plot for Rt value for the workpiece at 
flow rate of 90ml/hr. Here the blue dots represents the output values. It also says that all Rt 
values are very near to the linearity line, we can say that all the values are linear with each 
other. 
  

 

Fig 5.14 Residuals vs Fits for Rt (µm) 

The above Fig 5.14 represents the versus fits (Scattered plots). In the above figure the blue 
dots indicate Rt values. It says that for all the 9 experiments the output values are not same. 
It states that we used 9 different input parameters so for each parameter the output value is 
different. 
 
Response Surface Regression: Ra (µm) versus Cutting speed(m/min), Feed, DoC  

Table 5.16 Analysis of Variance of Ra of workpiece with flowrate of 90ml/hr 

 
Source DF Adj SS Adj MS F-Value P-Value %Contribution 
Model 3 36.946 12.315 41.53 0.049 - 
Linear 3 36.946 12.315 41.53 0.049 - 
Cutting 

speed(m/min) 
1 11.662 11.662 40.29 0.063 31.565 

Feed 1 5.594 5.594 25.06 0.011 15.141 
DoC 1 19.689 19.689 79.23 0.043 53.292 
Error 5 13.608 2.722    
Total 8 50.554     

Table 5.17 Modal Summary of Analysis of Variance of Ra of workpiece with flowrate 
of 90ml/hr 

S R-sq R-sq(adi) R-sq(pred) 
1.64973 73.08% 56.93% 0.00% 

Regression Equation in Uncoded Units 

Ra (µm) = 6.82 - 0.0518 Cutting speed(m/min) + 4.78 Feed + 6.04 DoC            -------EQ 5.8 
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The above Ra equation is used to find out the regression equation values for Ra of work 
piece with flowrate of 90ml/hr. Here according to the %contribution the Depth of cut is the 
most effecting parameter , cutting speed is the second most effecting parameter and feed is 
the least effecting parameter for Ra value for workpiece with flow rate of 90ml/hr. 
  

 

Fig 5.15 Normplot of Residuals for Ra (µm) 

The above Fig 5.15 represents the Normal Probability plot for Ra value for the workpiece at 
flow rate of 90ml/hr. Here the blue dots represents the output values. It also says that all Ra 
values are very near to the linearity line, we can say that all the values are linear with each 
other. 

 
 

Fig 5.16 Residuals vs Fits for Ra (µm) 
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The above Fig 5.16 represents the versus fits (Scattered plots). In the above figure the blue 
dots indicate Ra values. It says that for all the 9 experiments the output values are not 
same. It states that we used 9 different input parameters so for each parameter the output 
value is different. 
  

Response Surface Regression: Rq (µm) versus Cutting speed(m/min), Feed, DoC  

Table 5.18 Analysis of Variance of Rq of workpiece with flowrate of 90ml/hr 

Source DF Adj SS Adj MS F-Value P-Value %Contribution 
Model 3 33.394 11.131 36.15 0.024 - 
Linear 3 33.394 11.131 36.15 0.024 - 
Cutting 

speed(m/min) 
1 5.511 5.511 41.56 0.067 16.502 

Feed 1 1.027 1.027 22.29 0.013 3.0754 
DoC 1 26.856 26.856 172.59 0.040 80.421 
Error 5 17.681 3.536    
Total 8 51.075     

Table 5.19 Modal Summary of Analysis of Variance of Rq of workpiece with flowrate 
of 90ml/hr 

S R-sq R-sq(adi) R-sq(pred) 
1.88046 85.38% 84.61% 0.00% 

 
Regression Equation in Uncoded Units 
 
Rq (µm) = 8.35 - 0.0356 Cutting speed(m/min) + 2.05 Feed + 7.05 DoC                  -------EQ 5.9 
 
The above Rq equation is used to find out the regression equation values for Rq of work 
piece with flowrate of 90ml/hr. Here according to the %contribution the depth of cut is the 
most effecting parameter , cutting speed is second most effecting parameter and feed is the 
least effecting parameter for Rq value for workpiece with flow rate of 90ml/hr. 
 
 

 
Fig 5.17 Normplot of Residuals for Rq (µm) 
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The above Fig 5.17 represents the Normal Probability plot for Rq value for the workpiece at 
flow rate of 90ml/hr. Here the blue dots represents the output values. It also says that all Rq 
values are very near to the linearity line, we can say that all the values are linear with each 
other. 

 

Fig 5.18 Residuals vs Fits for Rq (µm) 

The above Fig 5.18 represents the versus fits (Scattered plots). In the above figure the blue 
dots indicate Rq values. It says that for all the 9 experiments the output values are not same. 
It states that we used 9 different input parameters so for each parameter the output value is 
different. 
 
 Response Surface Regression: Rz (µm) versus Cutting speed(m/min), Feed, DoC  

Table 5.20 Analysis of Variance of Rz of workpiece with flowrate of 90ml/hr 

Source DF Adj SS Adj MS F-Value P-Value %Contribution 
Model 3 390.929 130.310 99.66 0.060 - 
Linear 3 390.929 130.310 99.66 0.060 - 
Cutting 

speed(m/min) 
1 5.221 5.221 63.07 0.007 1.335 

Feed 1 112.630 112.630 112.43 0.065 28.810 
DoC 1 273.078 273.078 322.47 0.021 69.853 
Error 5 393.314 78.663    
Total 8 784.243     

Table 5.21 Modal Summary of Analysis of Variance of Rz of workpiece with flowrate 
of 90ml/hr 

S R-sq R-sq(adi) R-sq(pred) 
8.86920 89.82% 19.76% 0.00% 

Regression Equation in Uncoded Units 
 
Rz (µm) = 37.7 + 0.035 Cutting speed(m/min) - 21.4 Feed + 22.5 DoC                   ------EQ 5.10 
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The above Rz equation is used to find out the regression equation values for Rz of work 
piece with flowrate of 90ml/hr. Here according to the %contribution the feed is the most 
effecting parameter and cutting speed is the least effecting parameter for Rz value for 
workpiece with flow rate of 90ml/hr. 
 
 

 

Fig 5.19 Normplot of Residuals for Rz (µm) 

The above Fig 5.19 represents the Normal Probability plot for Rz value for the workpiece 
at flow rate of 180ml/hr. Here the blue dots represents the output values. It also says that 
all Rz values are very near to the linearity line, we can say that all the values are linear 
with each other. 
 

 

Fig 5.20 Residuals vs Fits for Rz (µm) 
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The above Fig 5.20 represents the versus fits (Scattered plots). In the above figure the blue 
dots indicate Rt values. Here the blue dots represents the output values. It says that for all 
the 9 experiments the output values are not same. It states that we used 9 different input 
parameters so for each parameter the output value is different. 

Table 5.22 Regression Equation Generated Values For Workpiece Of Flowrate 
(90ml/Hr) 

Cutting speed 
(m/min) 

Feed 
(mm) 

DoC 
(mm) 

MRR 
(m3/min) 

Rt 
(µm) 

Ra 
(µm) 

Rq 
(µm) 

Rz 
(µm) 

46.74 0.404 0.3 0.236 45.791 8.142 9.629 37.44 

46.74 0.596 0.6 18.147 45.784 10.872 12.138 40.082 

46.74 0.808 0.9 36.73 45.344 13.697 14.687 42.295 

74.38 0.404 0.6 19.739 51.396 8.522 10.76 45.158 

74.38 0.596 0.9 37.65 51.389 11.252 13.269 47.799 

74.38 0.808 0.3 21.853 38.529 8.641 9.473 29.762 

100.51 0.404 0.9 38.803 56.921 8.981 11.945 52.822 

100.51 0.596 0.3 22.334 44.493 6.274 8.109 35.213 

100.51 0.808 0.6 40.917 44.054 9.1 10.658 37.427 

The above table represents the values which are generated from using the equations which 
are given above. Some of the values are nearer to the experimental values ,where as some 
of the values are very much far away when compared with the experimental values . So 
that these values can be used for comparison of experimental values and regression 
equation generated values. 

5.2 RESPONSE OPTIMZER RESULTS 

RESPONSE OPTIMIZER RESULT FOR WORK PIECE WITH FLOWRATE OF 
180ML/HR 

After giving the Response Surface Optimizer inputs we click on OK and the results that 
will be displayed are given below in the figure. 
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Fig 5.21 Optimization plot for workpiece of 180 ml/hr 

Here from the above figure 5.21 we get the best output cutting parameters. They are 
Cutting speed – 100.512, Feed – 0.404, DOC – 0.90. Using these cutting parameters we 
did the machining again to get the output parameter values like MRR , Rt , Ra , Rq and Rz. 

Table 5.23 Results of Response Optimizer for Workpieces of 180 ml/hr 

S.no 
Cutting 
speed 

(m/min) 

Feed 
(mm) 

DoC 
(mm) 

MRR 
(m3/min) 

Rt 
(µm) 

Ra 
(µm) 

Rq 
(µm) 

Rz 
(µm) 

1 100.512 0.404 0.9 36.532 27.684 5.201 5.099 15.201 

Above values are the values which are obtained after doing machining for the above 
cutting parameters. Those cutting parameters are generated after completing the 
optimization. We did optimization so find out the best cutting parameter among the 
parameters we did with L9 experiments.  

RESPONSE SURFACE OPTIMIZER RESULT FOR WORK PIECE WITH 
FLOWRATE OF 90ML/HR 

After giving the Response Surface Optimizer inputs we click on OK and the results that 
will be displayed are given below in the figure. 
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Fig 5.22 Optimization plot for workpiece of 90ml/hr 

Here from the above figure 5.22 we get the best output cutting parameters. They are 
Cutting speed – 100.512, Feed – 0.808, DOC – 0.30. Using these cutting parameters we 
did the machining again to get the output parameter values like MRR , Rt , Ra , Rq and Rz. 

Table 5.24 Results of Response Optimizer for Workpiece of 90 ml/hr 

S.no 
Cutting 
speed 

(m/min) 

Feed 
(mm) 

DoC 
(mm) 

MRR 
(m3/min) 

Rt 
(µm) 

Ra 
(µm) 

Rq 
(µm) 

Rz 
(µm) 

1 100.512 0.404 0.9 31.256 38.257 8.354 9.741 32.012 
 

Above values are the values which are obtained after doing machining for the above 
cutting parameters. Those cutting parameters are generated after completing the 
optimization. We did optimization so find out the best cutting parameter among the 
parameters we did with L9 experiments. Here we consider these as best values from our set 
of experiments based on our Response Surface optimization.  

5.3 Fuzzy Logic Optimization Results 

We can use fuzzy logic in matlab opening fuzzy logic toolbox.It can be used for analyzing, 
designing, and simulating fuzzy logic systems. This lets you configure and specify inputs , 
outputs ,membership functions and rules. As per our requirement we are taking Cutting 
speed, Feed and Depth of cut as inputs and Material Removal Rate , Rt , Ra , Rq , Rz as our 
output parameters .To perform a fuzzy logic operation there are two fuzzy inference systems. 
They are Mamdani and Sugeno. As per our observation in most of the literatures Mamdani 
fuzzy inference system is used. So, we have also opted for Mamdani system. 
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Fig 5.23 Fuzzy logic designer 

As you can observe in above Fig 5.23 . We have taken Cutting speed, Feed and Depth of cut 
as input parameters , Mamdani system as our fuzzy inference system and Material Removal 
Rate , Rt , Ra , Rq , Rz as our output parameters. In the above figure we added input and 
output parameters using Add variable which is present in edit which is present on the toolbar. 
Here we have to define the range of value for the input parameters . So, we have given [45 
101] , [0.4 0.85] , [0.2 0.9] as our range values for Cutting speed , Feed and Depth of cut. 

Now we click on edit and open membership functions. These membership functions 
represents the degree of truth in fuzzy logic. They characterize all the information in fuzzy 
set. Membership functions mainly depend on the users experience rather than users 
knowledge 

.  

Fig 5.24 Fuzzy logic input membership functions for the work piece 
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Here in the above Fig 5.24 we are naming the membership functions as Low , Medium and 
High. So as to divide the range of values of Cutting speed , Feed and Depth of cut into 3 
ranges to define the range into Low , Medium And High. Based on the least and highest 
values of the input parameters they have been divided into 3 ranges . Now we have to give 
the range of values to the membership functions based on the range of Low , Medium And 
High. 

 

 

Fig 5.25 Fuzzy logic output membership functions for the work piece 

In the above diagram Fig 5.25 we setting up 5 membership functions into Very low , Low , 
Medium , High and Very high, So it will be much more accurate for the range of input 
parameters. Based on the least and highest of each and every range they are divided into  
Very low , Low , Medium High and Very high. 

Now we have to give rules . which play the most important role in fuzzy logic optimization 
. these rules are made by the user based on the input parameters and output parameters. While 
doing doing experimentation we have created a 9 experiment order based  on 3 factors and 
we did those on two work pieces but with different flow rates  . So for each 9 experiments 
we create a fuzzy logic system . so we create two fuzzy logic systems i.e., a work piece 
experimentation did at 180ml/hr and another workpiece experimentation did at 90ml/hr. 
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Fig 5.26 Rule editor for the work piece with flowrate of 180ml/hr 

The above Fig 5.26 discusses about the rules that are given by using theoretical knowledge 
which are gained by literatures and journals based upon cutting speed , feed and depth of 
cut. The above are the rules for workpiece 1 ,where its flowrate is 180ml/hr. 

Table 5.25 RULES FOR WORKPIECE WITH FLOW RATE OF 180ML/HR 

If 
CUTTING 
SPEED is 

And 
FEED is 

And 
DOC is 

Then 
MRR is 

And Rt 
is 

And Ra 
is 

And Rq 
is 

And Rz 
is 

M M H H H H H H 

L M M L VL VL VL VL 

H L L VL H H H VH 

L M L VL L VL VL VL 

M M M L L L L L 

L H H M H H H H 

M L L VL H H H H 

M H L L H H M M 

H H L M VH VH VH H 

M L M L M L L L 
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H H M H L L L L 

L M H M H H H H 

M M L VL M M M M 

L H L VL VL VL VL VL 

H H H VH L M M M 

H M L L H H H H 

L L L VL M M L M 

M L H M H H H H 

L L M L VL VL VL VL 

H M H H L L L L 

M H H H H H H H 

M H M M VH L L L 

L L H M L VH VH VH 

L L M L L L L L 

H L H M VL L L L 

H M M M VL VL VL VL 

L H M L H VL VL VL 

The above table 5.25 represents the rules used for training the fuzzy logic system. These 
rules are made using theoretical knowledge from literatures based upon the output values 
that came from the input values. For an example, for the first line we can write the rule as 

If CUTTING SPEED is M and FEED is M and DOC is H then MRR is H and Rt is H and 
Ra is H and Rq is H and Rz is H. 

Here L is low , M is medium , H is high , VL is very low , VH is very high. 
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Fig 5.27 Rule editor for the work piece with flowrate of 90ml/hr 

The above figure 5.27 discusses about the rules that are given by using theoretical 
knowledge which are gained by literatures and journals based upon cutting speed , feed 
and depth of cut. The above are the rules for workpiece 1 ,where its flowrate is 90ml/hr. 

Table 5.26 RULES FOR WORKPIECE WITH FLOW RATE OF 90ML/HR 

If 
CUTTING 
SPEED is 

And 
FEED is 

And 
DOC is 

Then 
MRR is 

And Rt 
is 

And Ra 
is 

And Rq 
is 

And Rz 
is 

M M H M M H H L 

L M M L M M L VL 

H L L H L L VL VH 

L M L L M L VL L 

M M M M M M L L 

L H H L H H M H 

M L L M L L VL H 

M H L M H L L M 

H H L H H L M L 

M L M M L M L H 
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H H M H H M H VL 

L M H L M H M VL 

M M L M M L VL L 

L H L L H L VL H 

H H H H H H VH VL 

H M L H M L L L 

L L L L L L VL L 

M L H M L H M H 

L L M L L M L VH 

H M H H M H H L 

M H H M H H H L 

M H M M H M M M 

L L H L L H M L 

L L M L L M L L 

H L H H L H M VH 

H M M H M M M L 

L H M L H M L H 

The above table 5.26 represents the rules used for training the fuzzy logic system. These 
rules are made using theoretical knowledge from literatures based upon the output values 
that came from the input values. For an example, for the first line we can write the rule as 

If CUTTING SPEED is M and FEED is M and DOC is H then MRR is M and Rt is M and 
Ra is H and Rq is L L and Rz is L. 

Here L is low , M is medium , H is high , VL is very low , VH is very high. 
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Fig 5.28 Rule viewer for the work piece with flowrate of 180ml/hr 

The above figure 5.28 dicusses about the values which are AI generated using the rules 
given before as in the table…. This table is for workpiece 1 with flow rate of 180ml/hr. 
Here in the input if we give our input parameter then on the top our output parameters 
values will be displayed which are AI generated values 

Table 5.27 Output values after fuzzy logic optimization for work piece with flow rate 
of 180ml/hr 

Cutting 
speed 

(m/min) 

Feed 

(mm) 

DoC 

(mm) 

MRR 

(m3/min) 

Rt 

(µm) 

Ra 

(µm) 

Rq 

(µm) 

Rz 

(µm) 

46.74 0.404 0.3 8.8 36.2 7.19 5 27.12 

46.74 0.596 0.6 17.3 14.5 2.07 2.32 9.52 

46.74 0.808 0.9 32 49 10.2 12.4 44 

74.38 0.404 0.6 17.3 37.5 4.25 5 18.8 

74.38 0.596 0.9 45.9 48 9.98 10.21 43 

74.38 0.808 0.3 18.8 48 9.98 8.62 31.2 

100.51 0.404 0.9 32 23.7 4.24 4.99 18.7 

100.51 0.596 0.3 18.8 49 10.2 12.4 44 

100.51 0.808 0.6 49.7 23.7 4.25 5 18.8 
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The above table 5.27 represents the input parameters and the output parameters that are 
generated from fuzzy logic system . The above values are generated based upon the range 
that we gave in the membership functions and the rules we gave in the rule editor. Based 
upon our training the above output values are generated through AI of fuzzy logic system. 
The above values are generated for workpiece with flowrate of 180ml/hr.  

 

 

Fig 5.29 Surface viewer for the work piece with flowrate of 180ml/hr 

The above figure 5.29 deals with surface that is created by the range given in the 
membership system and the rules that are given in the fuzzy system where the x axis is 
represented by cutting speed , y axis is represented by feed and the z axis is represented by 
MRR.The above surface diagram is for workpiece with flow rate 180ml/hr. This figure 
says that if the cutting speed increases then the Material Removal Rate increases . Even if 
the Feed increases while machining the Material removal rate increases. Here we can say 
that the cutting speed and the feed parameters are effecting the material removal rate.  
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Fig 5.30 Rule viewer for the work piece with flowrate of 90ml/hr 

The above figure 5.30 dicusses about the values which are AI generated using the rules 
given before as in the table 5.28.  This table is for workpiece 1 with flow rate of 90ml/hr. 
Here in the input if we give our input parameter then on the top our output parameters 
values will be displayed which are AI generated values 

Table 5.28 Output values after fuzzy logic optimization for work piece with flow rate 
of 90 ml/hr 

Cutting 
speed 
(m/min) 

Feed 
(mm) 

DoC 
(mm) 

MRR 
(m3/min) 

Rt 
(µm) 

Ra 
(µm) 

Rq 
(µm) 

Rz 
(µm) 

46.74 0.404 0.3 8.8 40 9.11 9.11 34.6 

46.74 0.596 0.6 17.3 33.3 8.75 8.75 33.8 

46.74 0.808 0.9 32 60 15.4 15.9 42.5 

74.38 0.404 0.6 17.3 60 8.75 12.5 50.12 

74.38 0.596 0.9 45.9 40 15.6 12.1 33.8 

74.38 0.808 0.3 18.8 50 8.75 9.11 34.6 

100.51 0.404 0.9 32 66.5 8.74 12.9 57 

100.51 0.596 0.3 18.8 40 6.3 6.3 29.2 

100.51 0.808 0.6 49.7 33.4 8.75 8.75 33.8 
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The above table 5.26 represents the input parameters and the output parameters that are 
generated from fuzzy logic system . The above values are generated based upon the range 
that we gave in the membership functions and the rules we gave in the rule editor. Based 
upon our training the above output values are generated through AI of fuzzy logic system. 
The above values are generated for workpiece with flowrate of 90ml/hr.  

 

 

 

Fig 5.31 surface viewer for the work piece with flowrate of 90ml/hr 

The above figure 5.29 deals with surface that is created by the range given in the 
membership system and the rules that are given in the fuzzy system where the x axis is 
represented by cutting speed , y axis is represented by feed and the z axis is represented by 
MRR.The above surface diagram is for workpiece with flow rate 90ml/hr. This figure says 
that if the cutting speed increases then the Material Removal Rate increases . Even if the 
Feed increases while machining the Material removal rate increases. Here we can say that 
the cutting speed and the feed parameters are effecting the material removal rate.  

 

COMPARISON BETWEEN EXPERIMENTAL VALUES VS REGRESSION 
EQUATION GENERATED VALUES FOR WORK PIECE WITH FLOWRATE OF 
180ML/HR 
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Fig 5.32 MRR Experimental(180ml/hr)              Fig 5.33 Rt Experimental(180ml/hr)  
 Vs MRR Regression equation value                        Vs Rt Regression equation value 

 

Fig 5.34 Ra Experimental(180ml/hr)                  Fig 5.35 Rq Experimental(180ml/hr) 
     Vs Ra Regression equation value                        Vs Rq Regression equation value 
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Fig 5.36 Rz Experimental(180ml/hr) Vs Rz Regression equation value 

The above figure 5.32, 5.33, 5.34, 5.35, 5.36 represents the difference between the MRR, Rt, 
Ra, Rq, Rz experimental values and MRR, Rt, Ra, Rq, Rz regression equation generated 
values that came from equation of the work piece with flowrate of 180ml/hr. Here we can 
observe the Rz experimental values are showing more difference when compared to the Rz 
regression equation generated values. Here we can observe the regression equation generated 
values are not up the values of experimental values. 

COMPARISON BETWEEN EXPERIMENTAL VALUES VS REGRESSION 
EQUATION GENERATED VALUES FOR WORK PIECE WITH FLOWRATE OF 
90ML/HR 

 

Fig 5.37 MRR Experimental(90ml/hr)            Fig 5.38 Rt Experimental(90ml/hr) 

  Vs MRR Regression equation value                Vs Rt Regression equation value 
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  Fig 5.39 Ra Experimental(90ml/hr)              Fig 5.40 Rq Experimental(90ml/hr) 

     Vs Ra Regression equation value                 Vs Rq Regression equation value 

 

       Fig 5.41 Rz Experimental(90ml/hr) Vs Rz Regression equation value 

The above figure 3.37, 3.38, 3.39, 3.40, 3.41 represents the difference between the MRR, Rt, 
Ra, Rq, Rz experimental values and MRR, Rt, Ra, Rq, Rz regression equation generated 
values that came from equation of the work piece with flowrate of 90ml/hr. Here we can 
observe the experimental values and the regression equation generated values are nearer to 
each other. 

COMPARISON BETWEEN EXPERIMENTAL VALUES VS FUZZY LOGIC 
VALUES FOR WORK PIECE WITH FLOWRATE OF 180ML/HR 
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Fig 5.42 MRR Experimental(180ml/hr)     Fig 5.43 Rt Experimental(180ml/hr) 

    Vs MRR Fuzzy generated value                 Vs Rt Fuzzy generated value 

 

 

Fig 5.44 Ra Experimental (180ml/hr)           Fig 5.45 Rq Experimental(180ml/hr) 

       Vs Ra Fuzzy generated value                      Vs Rq Fuzzy generated value 
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Fig 5.46 Rz Experimental(180ml/hr) Vs Rz Fuzzy generated value 

Here from above figure 5.42- 5.46  represents the difference between the MRR, Rt, Ra, Rq, 
Rz experimental values and MRR, Rt, Ra, Rq, Rz values that are from fuzzy logic values for 
work piece with flowrate of 180ml/hr. From the above figure we can observe that the 
experimental values and fuzzy logic values are very much nearer to each other. 

COMPARISON BETWEEN EXPERIMENTAL VALUES VS FUZZY LOGIC 
VALUES FOR WORK PIECE WITH FLOWRATE OF 90ML/HR 

 

Fig 5.47 MRR Experimental(90ml/hr)          Fig 5.48 Rt Experimental(90ml/hr) 

   Vs MRR Fuzzy generated value                     Vs Rt Fuzzy generated value 
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Fig 5.49 Ra Experimental (90ml/hr)               Fig 5.50 Rq Experimental(90ml/hr) 

     Vs Ra Fuzzy generated value                           Vs Rq Fuzzy generated value 

 

Fig 5.51 Rz Experimental(90ml/hr) Vs Rz Fuzzy generated value 

Here the above figure 5.47- 5.51 represents the difference between the MRR, Rt, Ra, Rq, Rz 
experimental values and MRR, Rt, Ra, Rq, Rz values that are from fuzzy logic values for 
work piece with flowrate of 90ml/hr. From the above figure we can observe that the 
experimental values and fuzzy logic values are very much nearer to each other. 

COMPARISON BETWEEN REGRESSION EQUATION GENERATED VALUES VS 
FUZZY LOGIC VALUES FOR WORK PIECE WITH FLOWRATE OF 180ML/HR 
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Fig 5.52 MRR Regression equation value            Fig 5.53 Rt Regression equation value 

 (180ml/hr) Vs MRR Fuzzy generated value        (180ml/hr) Vs Rt Fuzzy generated value 

 

 

Fig 5.54 Ra Regression equation value               Fig 5.55 Rq Regression equation value 

 (180ml/hr) Vs Ra Fuzzy generated value           (180ml/hr) Vs Rq Fuzzy generated value 
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Fig 5.56 Rz Regression equation value (180ml/hr) Vs Rz Fuzzy generated value 

Here the above figure 5.52- 5.56 represents the difference between the MRR, Rt, Ra, Rq, Rz 
regression equation generated values and MRR, Rt, Ra, Rq, Rz values that are from fuzzy 
logic values for work piece with flowrate of 180ml/hr. 

COMPARISON BETWEEN REGRESSION EQUATION GENERATED VALUES VS 
FUZZY LOGIC VALUES FOR WORK PIECE WITH FLOWRATE OF 90ML/HR 

 

Fig 5.57 MRR Regression equation value         Fig 5.58 Rt Regression equation value 

 (90ml/hr) Vs MRR Fuzzy generated value     (90ml/hr) Vs Rt Fuzzy generated value 
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 Fig 5.59 Ra Regression equation value           Fig 5.60 Rq Regression equation value 

(90ml/hr) Vs Ra Fuzzy generated value           (90ml/hr) Vs Rq Fuzzy generated value 

 

Fig 5.61 Rz Regression equation value (90ml/hr) Vs Rz Fuzzy generated value 

Here the above figure 5.57-5.61 represents the difference between the MRR, Rt, Ra, Rq, Rz 
regression equation generated values and MRR, Rt, Ra, Rq, Rz values that are from fuzzy 
logic values for work piece with flowrate of 90ml/hr. 

Here we can see that the above figures are obtained by taking our nine number of 
experiments on X axis and Material Removal Rate, Rt, Ra, Rq, Rz values on Y axis. From 
most of the figures we can observe that Regression equation generated values are nearer to 
most of the experimental values. But for some of the experiments the values are showing 
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more variation. But when compared with the experimental values and fuzzy logic values 
they are almost same i.e., they are  very nearer to each other. 

By seeing above figures we can state the fuzzy logic generated values are very much accurate 
to the experimental values. So, that we can state that AI generated values are much more 
accurate when compared to the Regression equation generated values. Because when we 
compare experimental values and regression equation generated values vs experimental 
values and fuzzy logic AI generated values. The values of fuzzy logic generated values are 
much more near and accurate to the experiment values i.e., the AI generated values are much 
more near when compared to the statistical values which are generated from the from 
regression equations. 

From the above figures we can state that the surface roughness values with high flowrate are 
minimum and the surface roughness values with low flow rate are maximum. These figures 
also states that the comparison between experimental values which are noted from surface 
roughness tester and statistical values which are generated from the regression equation 
which are generated from response surface optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 
 

CHAPTER 6 

CONCLUSION  

6.1 Conclusion 

An essential part of data analysis and modelling is comparing statistical values produced by 
fuzzy logic with experimental values. When discussing surface roughness testing, 
experimental values are those that are obtained directly using a surface roughness metre, 
while statistical values are those that are obtained by using a fuzzy logic model to forecast 
the data that has been measured. 

When the data is very confusing and changeable and precise numerical values are not 
accessible, fuzzy logic can be especially helpful. Operator experience, ambient conditions, 
and other variables that could alter surface roughness are just a few examples of the many 
input variables that fuzzy logic can take into consideration yet are difficult to accurately 
define or measure. The experimental results and the statistical values derived by fuzzy logic 
may be compared using statistical techniques including correlation analysis, mean square 
error, and coefficient of determination. These techniques make it easier to measure the 
degree of agreement between experimental and statistical results and assess the fuzzy logic 
model's precision. The fuzzy logic model is a viable model for forecasting surface roughness 
under diverse situations if the statistical values it generates are in good agreement with the 
experimental data. The model may need to be improved or more data need to be gathered if 
there is a significant difference between experimental and statistical results. 

Statistical techniques are used to verify the model and direct additional testing, and they may 
be used to evaluate the precision of the fuzzy logic model and the anticipated values. 
Regression analysis and fuzzy logic are both effective methods for modelling and data 
analysis. Regression analysis is a statistical tool for determining correlations between 
variables, whereas fuzzy logic is a reasoning technique that works with ambiguous or 
inaccurate information. The quality and amount of the data utilised, the difficulty of the 
problem, and the algorithms and models employed are only a few of the variables that affect 
how accurately the results acquired using either technique. 

In general, the current research intends to improve the machining process parameters for 
effective and sustainable machining of materials under MQL circumstances using vegetable 
oil (sesame oil) as the cutting fluid. The study examines how several output characteristics, 
including MRR, Ra, Rq, Rz, and Rt, are impacted by flow rate, speed, feed rate, and depth 
of cut. For each flow rate, nine experimental runs are designed using the Taguchi L9 
orthogonal array, and analysis of variance is performed to determine the primary cutting 
process parameters for the surface roughness profiles under MQL circumstances.  
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So, we conclude that : 

 The study's findings demonstrate that reducing surface roughness values by increasing 
cutting fluid flow rate also results in an increase in MRR. When compared to the response 
surface optimisation approach, the usage of fuzzy logic optimisation produced results 
that were more exact and precise. 

 In general, optimising the cutting process's parameters using fuzzy logic optimisation 
and vegetable oil (sesame oil) as the cutting fluid can greatly increase the cutting 
operations' sustainability, accuracy, and productivity while minimising the negative 
effects of using toxic cutting fluids on the environment and human health. 

 A confirmation experiment has been performed. Flowrate with 180ml/hr have better 
surface finish. The chosen range's optimum feasible combination of cutting speed, feed 
rate, and cut depth is 100.512 m/min, 0.404 mm, and 0.9 mm. For these the output 
parameters i.e MRR, Rt, Ra, Rq, Rz are 36.532 m3/min , 27.684 µm, 5.201 µm, 5.099 µm 
and 15.201 µm respectively. 

6.2 Future Scope 

Statistical techniques like correlation analysis, mean square error, and coefficient of 
determination can be used to compare experimental results with statistical results produced 
by fuzzy logic. These techniques make it easier to measure the degree of agreement between 
experimental and statistical results and assess the fuzzy logic model's precision. 

The fuzzy logic model is a viable model for forecasting surface roughness under diverse 
situations if the statistical values it generates are in good agreement with the experimental 
data. The model may need to be improved or more data need to be gathered if there is a 
significant difference between experimental and statistical results. 

To assist verify the model and direct more tests, statistical approaches may be used to assess 
the precision of the fuzzy logic model and the anticipated values. 
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